OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 27, Iss. 12 — Jun. 15, 2009
  • pp: 1957–1967

A 60 GHz Radio-Over-Fiber Network Architecture for Seamless Communication With High Mobility

Nikos Pleros, Konstantinos Vyrsokinos, Kostas Tsagkaris, and Nikolaos D. Tselikas

Journal of Lightwave Technology, Vol. 27, Issue 12, pp. 1957-1967 (2009)


View Full Text Article

Acrobat PDF (1871 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We demonstrate a 60 GHz broadband picocellular Radio-over-Fiber network architecture that enables seamless connectivity for highly mobile end-users. Its seamless communication capabilities arise by the supported handover scheme that relies on a novel Moving Extended Cell (MEC) concept. MEC exploits user-centric virtual groups of adjacent cells that transmit the same data content to the user and utilizes a switch mechanism for restructuring the virtual multi-cell area according to the user's mobility pattern, so that a virtual antenna group moves together with the mobile user. We present the theoretical formulation for MEC and show that it can provide zero packet loss and call dropping probability values in high-rate wireless services for a broad range of mobile speeds up to 40 m/sec, independently of the fiber link distances. We also demonstrate the physical layer network architecture and switch mechanism both for a RoF network with a single 60 GHz radio frequency (RF) over each wavelength, as well as for a RoF configuration supporting simultaneous multi-RF channel transmission over each optical wavelength. The performance of the multi-RF-over-$\lambda$ network implementation is evaluated via simulations showing successful 100 Mb/s radio signal transmission over fiber links longer than 30 km. To this end, MEC can enable seamless connectivity and bandwidth guarantees in 60 GHz picocellular RoF networks being also capable of serving multiple users over the same wavelength in a RF frequency-division-multiplexed (FDM) approach.

© 2009 IEEE

Citation
Nikos Pleros, Konstantinos Vyrsokinos, Kostas Tsagkaris, and Nikolaos D. Tselikas, "A 60 GHz Radio-Over-Fiber Network Architecture for Seamless Communication With High Mobility," J. Lightwave Technol. 27, 1957-1967 (2009)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-27-12-1957

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited