OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 27, Iss. 14 — Jul. 15, 2009
  • pp: 2557–2562

An Efficient Numerical Method for Optical Waveguides With Holes

Lijun Yuan and Ya Yan Lu

Journal of Lightwave Technology, Vol. 27, Issue 14, pp. 2557-2562 (2009)

View Full Text Article

Acrobat PDF (321 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Optical waveguides with structural variations along the waveguide axes are useful in many applications. One way to realize such a variation is to insert a sequence of holes in the waveguide core. In this paper, an efficient numerical method is developed for 2-D slab waveguides with hole arrays in the core. The method divides the waveguide into a number of segments, then jumps over the holes using the Dirichlet-to-Neumann maps of the segments.

© 2009 IEEE

Lijun Yuan and Ya Yan Lu, "An Efficient Numerical Method for Optical Waveguides With Holes," J. Lightwave Technol. 27, 2557-2562 (2009)

Sort:  Year  |  Journal  |  Reset


  1. T. F. Krauss, B. Vogele, C. R. Stanley, R. M. De la Rue, "Waveguide microcavity based on photonic microstructures," IEEE Photon. Technol. Lett. 9, 176-178 (1997).
  2. J. Ctyroky, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petracek, P. Lalanne, J. P. Hugonin, R. M. De La Rue, "Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task," Opt. Quantum Electron. 34, 455-470 (2002).
  3. M. Gnan, G. Bellanca, H. M. H. Chong, P. Bassi, R. M. De la Rue, "Modelling of photonic wire Bragg gratings," Opt. Quantum Electron. 38, 133-148 (2006).
  4. P. R. Villeneuve, S. H. Fan, J. D. Joannopoulos, K. Y. Lim, G. S. Petrich, L. A. Kolodziejski, R. Reif, "Air-bridge microcavities," Appl. Phys. Lett. 67, 167-169 (1995).
  5. J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, R. M. Joseph, A. Taflove, C. W. Tu, S. T. Ho, "Nanofabrication of 1-D photonic bandgap structures along a photonic wire," IEEE Photon. Technol. Lett. 8, 491-493 (1996).
  6. J. C. Chen, H. A. Haus, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, "Optical filters from photonic band gap air bridges," J. Lightw. Technol. 14, 2575-2580 (1996).
  7. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
  8. A. S. Jugessur, P. Pottier, R. M. De La Rue, "Engineering the filter response of photonic crystal microcavity filters," Opt. Expr. 12, 1304-1312 (2004).
  9. C. H. Chen, Y. Fainman, "Photonic bandgap microcavities with flat-top response," IEEE J. Sel. Topics Quantum Electron. 13, 262-269 (2007).
  10. Q. H. Liu, W. C. Chew, "Analysis of discontinuities in planar dielectric waveguides: An eigenmode propagation method," IEEE Trans. Microw. Theory Tech. 39, 422-430 (1991).
  11. G. Sztefka, H. P. Nolting, "Bidirectional eigenmode propagation for large refractive index steps," IEEE Photon. Technol. Lett. 5, 554-557 (1993).
  12. J. Willems, J. Haes, R. Baets, "The bidirectional mode expansion method for 2-dimensional wave-guides—The TM case," Opt. Quantum Electron. 27, 995-1007 (1995).
  13. S. F. Helfert, R. Pregla, "Efficient analysis of periodic structures," J. Lightw. Technol. 16, 1694-1702 (1998).
  14. P. Bienstman, R. Baets, "Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers," Opt. Quantum Electron. 33, 327-341 (2001).
  15. E. Silberstein, P. Lalanne, J. P. Hugonin, Q. Cao, "Use of grating theories in integrated optics," J. Opt. Soc. Amer. A 18, 2865-2875 (2001).
  16. J. Čtyroký, "Improved bidirectional mode expansion propagation algorithm based on Fourier series," J. Lightw. Technol. 25, 2321-2330 (2007).
  17. H. Rao, R. Scarmozzino, R. M. Osgood, "A bidirectional beam propagation method for multiple dielectric interfaces," IEEE Photon. Technol. Lett. 11, 830-832 (1999).
  18. H. El-Refaei, D. Yevick, I. Betty, "Stable and noniterative bidirectional beam propagation method," IEEE Photon. Technol. Lett. 12, 389-391 (2000).
  19. P. L. Ho, Y. Y. Lu, "A stable bidirectional propagation method based on scattering operators," IEEE Photon. Technol. Lett. 13, 1316-1318 (2001).
  20. P. L. Ho, Y. Y. Lu, "A bidirectional beam propagation method for periodic waveguides," IEEE Photon. Technol. Lett. 14, 325-327 (2002).
  21. Y. Y. Lu, S. H. Wei, "A new iterative bidirectional beam propagation method," IEEE Photon. Technol. Lett. 14, 1533-1535 (2002).
  22. L. Yuan, Y. Y. Lu, "An efficient bidirectional propagation method based on Dirichlet-to-Neumann maps," IEEE Photon. Technol. Lett. 18, 1967-1969 (2006).
  23. L. Yuan, Y. Y. Lu, "A recursive doubling Dirichlet-to-Neumann map method for periodic waveguides," J. Lightw. Technol. 25, 3649-3656 (2007).
  24. E. Popov, M. Nevière, B. Gralak, G. Tayeb, "Staircase approximation validity for arbitrary-shaped gratings," J. Opt. Soc. Amer. A 19, 33-42 (2002).
  25. Y. Huang, Y. Y. Lu, "Scattering from periodic arrays of cylinders by Dirichlet-to-Neumann maps," J. Lightw. Technol. 24, 3448-3453 (2006).
  26. J. Yuan, Y. Y. Lu, X. Antoine, "Modeling photonic crystals by boundary integral equations and Dirichlet-to-Neumann maps," J. Comput. Phys. 227, 4617-3629 (2008).
  27. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
  28. W. C. Chew, W. H. Weedon, "A 3D perfectly matched medium from modified Maxwells equations with stretched coordinates," Microw. Opt. Technol. Lett. 7, 599-604 (1994).
  29. Y. Huang, Y. Y. Lu, S. Li, "Analyzing photonic crystal waveguides by Dirichlet-to-Neumann maps," J. Opt. Soc. America B 24, 2860-2867 (2007).
  30. Y. P. Chiou, Y. C. Chiang, H. C. Chang, "Improved three-points formulas considering the interface conditions in the finite-difference analysis of step-index optical devices," J. Lightw. Technol. 18, 243-251 (2000).
  31. Y. Y. Lu, "Minimizing the discrete reflectivity of perfectly matched layers," IEEE Photon. Technol. Lett. 18, 487-489 (2006).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited