Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 27,
  • Issue 15,
  • pp. 3092-3106
  • (2009)

Optical Signal Processor Using Electro-Optic Polymer Waveguides

Not Accessible

Your library or personal account may give you access

Abstract

We have investigated an optical signal processor using electro-optic polymer waveguides operating at a wavelength of 1.55 $\mu$m. Due to recent developments, many useful optical devices have become available such as optical filters, modulators, switches, and multiplexers. It will be useful to have a single optical device, which is reconfigurable to implement all of these functions. We call such a device an “optical signal processor,” which will play a similar role to digital signal processors in electrical circuits. We realize such an optical device in a planar lightwave circuit. Since the planar lightwave circuits are based on the multiple interference of coherent light and can be integrated with significant complexity, they have been implemented for various purposes of optical processing such as optical filters. However, their guiding waveguides are mostly passive, and the only viable mechanism to reconfigure their functions is thermal effects, which is slow and cannot be used for high-speed applications such as optical modulators or optical packet switches. On the other hand, electro-optic polymer has a very high electro-optic coefficient and a good velocity match between electrical and optical signals, thus, permitting the creation of high-speed optical devices with high efficiency. Therefore, we have implemented a planar lightwave circuit using the electro-optic polymer waveguides. As a result, the structure is complex enough to generate arbitrary functions and fast enough to obtain high data rates. Using the optical signal processor, we investigate interesting applications including arbitrary waveform generators.

© 2009 IEEE

PDF Article
More Like This
Integration of electro-optic polymer modulators with low-loss fluorinated polymer waveguides

Seh-Won Ahn, William H. Steier, Yin-Hao Kuo, Min-Cheol Oh, Hyung-Jong Lee, Cheng Zhang, and Harold R. Fetterman
Opt. Lett. 27(23) 2109-2111 (2002)

Terahertz-wave generation devices using electro-optic polymer slab waveguides and cyclo-olefin polymer clads

Takahiro Kaji, Yukihiro Tominari, Toshiki Yamada, Shingo Saito, Isao Morohashi, and Akira Otomo
Opt. Express 26(23) 30466-30475 (2018)

D-band optical modulators using electro-optic polymer waveguides and non-coplanar patch antennas

Takahiro Kaji, Isao Morohashi, Yukihiro Tominari, Meguru Ohara, Toshiki Yamada, and Akira Otomo
Opt. Express 31(11) 17112-17121 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved