OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 27, Iss. 21 — Nov. 1, 2009
  • pp: 4793–4803

New Branch Metrics for MLSE Receivers Based on Polarization Diversity for PMD Mitigation

Gabriella Bosco, Pierluigi Poggiolini, Monica Visintin, Li Liangchuan, and Chen Ming

Journal of Lightwave Technology, Vol. 27, Issue 21, pp. 4793-4803 (2009)


View Full Text Article

Acrobat PDF (1995 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this paper, we analyze the performance of polarization-diversity receivers employing maximum-likelihood sequence estimation (MLSE) to combat the effects of polarization mode dispersion (PMD) for both the intensity-modulation direct detection (IMDD) and duobinary modulation formats at 43 Gb/s. We propose and study several parametric branch metrics, showing that the use of MLSE receivers based on polarization diversity with appropriate branch metrics allows to cancel out the high penalty incurred by standard MLSE receivers in the presence of PMD.

© 2009 IEEE

Citation
Gabriella Bosco, Pierluigi Poggiolini, Monica Visintin, Li Liangchuan, and Chen Ming, "New Branch Metrics for MLSE Receivers Based on Polarization Diversity for PMD Mitigation," J. Lightwave Technol. 27, 4793-4803 (2009)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-27-21-4793


Sort:  Year  |  Journal  |  Reset

References

  1. H. Bulow, F. Buchali, A. Klekamp, "Electronic dispersion compensation," J. Lightw. Technol. 26, 158-167 (2008).
  2. O. E. Agazzi, M. R. Hueda, H. S. Carrer, D. E. Crivelli, "Maximum-likelihood sequence estimation in dispersive optical channels," J. Lightw. Technol. 23, 749-763 (2005).
  3. T. Foggi, E. Forestieri, G. Colavolpe, G. Prati, "Maximum-likelihood sequence detection with closed-form metrics in OOK optical systems impaired by GVD," J. Lightw. Technol. 24, 3073-3087 (2006).
  4. N. Alic, G. C. Papen, R. E. Saperstein, R. Jiang, C. Marki, Y. Fainman, S. Radic, P. A. Andrekson, "Experimental demonstration of 10 Gb/s NRZ extended dispersion-limited reach over 600 km-SMF link without optical dispersion compensation," Opt. Fiber Commun. AnaheimCA (2006) paper OWB7.
  5. P. Poggiolini, G. Bosco, J. Prat, R. Killey, S. Savory, "Branch metrics for effective long-haul MLSE," Eur. Conf. Opt. Commun. CannesFrance (2006) paper We2.5.
  6. S. Chandrasekhar, "Performance of MLSE receiver in a dispersion-managed experiment at 10.7 Gb/s under non-linear transmission," IEEE Photon. Technol. Lett. 18, 2448-2450 (2006).
  7. M. R. Hueda, D. E. Crivelli, H. S. Carrer, "Performance of MLSE-based receivers in lightwave systems with nonlinear dispersion and amplified spontaneous emission noise," Proc. IEEE GLOBECOM (2004) pp. 299-303.
  8. P. Poggiolini, G. Bosco, M. Visintin, S. J. Savory, Y. Benlachtar, P. Bayvel, R. I. Killey, "MLSE-EDC versus optical dispersion compensation in a single-channel SPM-limited 800 km link at 10 Gb/s," Eur. Conf. Opt. Commun. BerlinGermany (2007).
  9. F. Buchali, G. Thielecke, H. Bulow, "Viterbi equalizer for mitigation of distortions from chromatic dispersion and PMD at 10 Gb/s," Opt. Fiber Commun. Los AngelesCA (2004) paper MF85.
  10. J. M. Gené, P. J. Winzer, S. Chandrasekhar, H. Kogelnik, "Simultaneous compensation of polarization mode dispersion and chromatic dispersion using electronic signal processing," J. Lightw. Technol. 25, 1735-1741 (2007).
  11. T. Kupfer, J. Whiteaway, S. Langenbach, "PMD compensation using electronic equalization particular maximum likelihood sequence estimation," Opt. Fiber Commun. AnaheimCA (2007) paper OMH1.
  12. A. O. Lima, I. T. Lima, T. Adali, Jr.C. R. Menyuk, "A novel polarization diversity receiver for PMD mitigation," IEEE Photon. Technol. Lett. 14, 465-467 (2002).
  13. S. Benedetto, R. Gaudino, P. Poggiolini, "Direct detection of optical digital transmission based on polarization shift keying modulation," IEEE J. Sel. Areas Commun. 13, 531-542 (1995).
  14. D. Penninckx, M. Chbat, L. Pierre, J.-P. Thiery, "The Phase-shaped Binary Transmission (PSBT): A new technique to transmit far beyond the chromatic dispersion limit," Proc. Eur. Conf. Opt. Commun. (1996) pp. 173-176.
  15. T. Kupfer, C. Dorschky, M. Ene, S. Langenbach, "Measurement of the performance of 16-states MLSE digital equalizer with different optical modulation formats," Opt. Fiber Commun. San DiegoCA (2008) paper PDP13.
  16. G. J. Foschini, C. D. Poole, "Statistical theory of polarization dispersion in single mode .bers," J. Lightw. Technol. 9, 1439-1456 (1991).
  17. S. Benedetto, P. Poggiolini, "Theory of polarization shift keying modulation," IEEE Trans. Commun. 40, 708-721 (1992).
  18. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge Univ. Press, 1992).
  19. J. G. Proakis, Digital Communications (McGraw-Hill, 1989).
  20. M. R. Hueda, D. E. Crivelli, H. S. Carrer, O. E. Agazzi, "Parametric estimation of IM/DD optical channels using new closed-form approximations of the signal PDF," J. Lightw. Technol. 25, 957-975 (2007).
  21. M. Franceschini, G. Ferrari, R. Raheli, F. Meli, A. Castoldi, "Post-detection nonlinear distortion for efficient MLSD in optical links," Opt. Express 15, 11750-11755 (2007).
  22. G. Bosco, P. Poggiolini, M. Visintin, "Performance analysis of MLSE receivers based on the square-root metric," J. Lightw. Technol. 26, 2098-2109 (2008).
  23. J. N. Damask, Polarization Optics in Telecommunications (Springer-Verlag, 2004).
  24. G. Colavolpe, T. Foggi, E. Forestieri, G. Prati, "Multilevel optical modulations with closed-form optimal metrics for MLSE receiver insensitive to GVD and PMD," Opt. Fiber Commun. San DiegoCA (2008) paper JWA57.
  25. A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, 1991) pp. 329.
  26. C. D. Poole, D. L. Favin, "Polarization-mode dispersion measurement based on transmission spectra through a polarizer," J. Lightw. Technol. 12, 917-929 (1994).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited