Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 27,
  • Issue 22,
  • pp. 4935-4942
  • (2009)

Suppression of Higher-Order Modes by Segmented Core Doping in Rod-Type Photonic Crystal Fibers

Not Accessible

Your library or personal account may give you access

Abstract

A large mode area Yb-doped rod-type photonic crystal fiber design with a low refractive index ring in the core is proposed to provide an improved suppression of the first higher-order mode compared to the case of uniform core doping, in a way which is more robust against fluctuations in the refractive index value. After applying a scalar step-index model for a first parameter optimization of the proposed design, a full-vector modal solver based on the finite element method has been exploited to analyze the guided mode overlap and effective area for the most promising fibers identified. Finally, a spatial and spectral amplifier model has been considered to study the gain competition among the fundamental and the first higher-order mode guided in the Yb-doped rod-type fibers. Results have demonstrated the effectiveness of the low refractive index ring in suppressing the higher-order mode, thus providing an effectively single-mode behavior for the rod-type fibers.

© 2009 IEEE

PDF Article
More Like This
Cut-off analysis of 19-cell Yb-doped double-cladding rod-type photonic crystal fibers

F. Poli, E. Coscelli, T. T. Alkeskjold, D. Passaro, A. Cucinotta, L. Leick, J. Broeng, and S. Selleri
Opt. Express 19(10) 9896-9907 (2011)

Higher-order mode suppression in twisted single-ring hollow-core photonic crystal fibers

N. N. Edavalath, M. C. Günendi, R. Beravat, G. K. L. Wong, M. H. Frosz, J.-M. Ménard, and P. St.J. Russell
Opt. Lett. 42(11) 2074-2077 (2017)

Comparison of higher-order mode suppression and Q-switched laser performance in thulium-doped large mode area and photonic crystal fibers

Pankaj Kadwani, Clemence Jollivet, R. Andrew Sims, Axel Schülzgen, Lawrence Shah, and Martin Richardson
Opt. Express 20(22) 24295-24303 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved