OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 28, Iss. 5 — Mar. 1, 2010
  • pp: 754–760

Widely Tunable Short-Pulse Generation With Ultralong Semiconductor Optical Amplifiers

Patrick Runge, Christian-Alexander Bunge, Klaus Petermann, Michael Schlak, Walter Brinker, and Bernd Sartorius

Journal of Lightwave Technology, Vol. 28, Issue 5, pp. 754-760 (2010)


View Full Text Article

Acrobat PDF (811 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Ultralong bulk semiconductor optical amplifiers (bulk UL-SOAs) have tremendous four-wave mixing (FWM) efficiencies so that due to two continuous wave (CW) input signals, a broad mode comb at the output of the UL-SOA can be obtained. When using tunable single mode lasers as input signals, the generated FWM mode comb is tunable in the mode spacing and the wavelength. As a result in time domain, widely tunable pulses in the repetition rate and the carrier frequency are obtained. Since the phase signature of the FWM modes is not linear over the whole mode comb, different filtering techniques can be applied for filtering modes with linear phase in order to efficiently generate short pulses. With the optimal filtering technique, pulses with full width at half maximum of less than 2 ps and a pulse repetition rate of 20 GHz can be obtained.

© 2010 IEEE

Citation
Patrick Runge, Christian-Alexander Bunge, Klaus Petermann, Michael Schlak, Walter Brinker, and Bernd Sartorius, "Widely Tunable Short-Pulse Generation With Ultralong Semiconductor Optical Amplifiers," J. Lightwave Technol. 28, 754-760 (2010)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-28-5-754


Sort:  Year  |  Journal  |  Reset

References

  1. H.-G. Weber, R. Ludwig, S. Ferber, C. Schmidt-Langhorst, M. Kroh, V. Marembert, C. Boerner, C. Schubert, "Ultrahigh-speed OTDM-transmission technology," J. Lightw. Technol. 24, 4616-4627 (2006).
  2. A. Viglienzoni, "Evolution of products and enabling technologies for optical networks," Proc. Photonics in Switching'08 (2008).
  3. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, K.-I- Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000).
  4. T. Inoue, N. Kumano, M. Takahashi, T. Yagi, M. Sakano, "Generation of 80 nm wavelength-tunable 100 fs pulse based on comblike profiled fiber comprised of HNLF and zero dispersion-slope NZDSF," J. Lightw. Technol. 25, 165-169 (2007).
  5. H. A. Haus, K. Tamura, L. E. Nelson, E. P. Ippen, "Stretched-pulse additive pulse mode-locking in fiber ring lasers: Theory and experiment," IEEE Quantum Electron. 31, 591-598 (1995).
  6. R. Kaiser, B. Hüttl, H. Heidrich, S. Fidorra, W. Rehbein, H. Stolpe, R. Stenzel, W. Ebert, G. Sahin, "Tunable monolithic mode-locked lasers on InP with low timing jitter," IEEE Photon. Technol. Lett. 15, 634-636 (2003).
  7. K. Sato, K. Wakita, L. Kotaka, Y. Kondo, M. Yamamoto, "Monolithic strained-InGaAsP multiple-quantum-well lasers with integrated electroabsorption modulators for active mode locking," Appl. Phys. Lett. 65, 1-3 (1994).
  8. R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, M. Pepper, "Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue," J. Phys. Med. Biol. 47, 3853-3863 (2002).
  9. D. M. Mittleman, R. H. Jacobsen, M. C. Nuss, "T-ray imaging," IEEE J. Sel. Top. Quantum Electron. 2, 679-692 (1996).
  10. C. Bornholdt, J. Slovak, B. Sartorius, M. Schlak, Ch. Schmidt, "Optical comb generator using pulse compression in ultra-long semiconductor amplifiers," Proc. ECOC'05 (2005).
  11. A. Bogatov, P. Eliseev, B. Sverdlov, "Anomalous interaction of spectral modes in a semiconductor laser," IEEE J. Quantum Electron. QE-11, 510-515 (1975).
  12. P. Runge, R. Elschner, C.-A. Bunge, K. Petermann, "Extinction ratio improvement in ultralong semiconductor optical amplifiers," IEEE J. Quantum Electron. 45, 578-585 (2009).
  13. P. Runge, R. Elschner, C.-A. Bunge, K. Petermann, M. Schlak, W. Brinker, B. Sartorius, "Operational conditions for the extinction ratio improvement in ultralong SOAs," IEEE Photon. Technol. Lett. 21, 106-108 (2009).
  14. P. Runge, R. Elschner, K. Petermann, "Time-domain modelling of ultralong semiconductor optical amplifiers," IEEE J. Quantum Electron. .
  15. F. Kerbstadt, K. Petermann, "Analysis of adaptive dispersion compensators with double-AWG structures," J. Lightw. Technol. 23, 1468-1477 (2005).
  16. Y. Miyamoto, A. Hirano, K. Yonenaga, A. Sano, H. Toba, K. Murata, O. Mitomi, "320 Gbit/s (8$\,\times\,$40 Gbit/s) WDM transmission over 367 km with 120 km repeater spacing using carrier-suppressed return-to-zero format," Electron. Lett. 35, 2041-2042 (1999).
  17. P. Runge, R. Elschner, K. Petermann, "Optimising four-wave mixing in ultralong SOAs," Proc. NUSOD'09 (2009).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited