OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 29, Iss. 1 — Jan. 1, 2011
  • pp: 109–114

Traveling Solutions of the Fuse Effect in Optical Fibers

Margarida Facão, Ana Maria Rocha, and Paulo Sérgio de Brito André

Journal of Lightwave Technology, Vol. 29, Issue 1, pp. 109-114 (2011)

View Full Text Article

Acrobat PDF (382 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In this paper, we reduce a partial differential equation that models the optical fiber fuse to an ordinary differential equation (ODE) using a traveling variable. This similarity reduction neglects the radiation loss term; however, the obtained fuse speeds are in good agreement with the ones obtained with the full propagation equation. The ODE results reveal the dependence of the fuse speed with the thermal parameters of silica and with the optical power density. We have also combined those results with experimental ones in order to adjust fiber absorption parameters.

© 2011 IEEE

Margarida Facão, Ana Maria Rocha, and Paulo Sérgio de Brito André, "Traveling Solutions of the Fuse Effect in Optical Fibers," J. Lightwave Technol. 29, 109-114 (2011)

Sort:  Year  |  Journal  |  Reset


  1. R. Kashyap, K. J. Blow, "Observation of catastrophic self-propelled self-focusing in optical fibres," Electron. Lett. 24, 47-49 (1988).
  2. D. P. Hand, P. St. J. Russel, "Solitary thermal shock waves and optical damage in optical fibers: The fiber fuse," Opt. Lett. 13, 767-769 (1988).
  3. P. S. André;, A. M. Rocha, B. Neto, A. Martins, M. Facão, J. L. Pinto, A. L. J. Teixeira, R. Nogueira, M. J. Lima, G. Beleffi, "Optical fiber bending limits for the optical fiber infraestructures," Proc. IEEE AFRICON (2009) pp. 1-3.
  4. E. M. Dianov, V. E. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, A. A. Frolov, "High-speed photography, spectra, and temperature of optical discharge in silica-based fibers," IEEE Photon. Technol. Lett. 18, 752-754 (2006).
  5. D. D. Davis, S. C. Mettler, D. J. DiGiovanni, "A comparative evaluation of fiber fuse models," Proc. SPIE 2966, 592-606 (1996).
  6. E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, I. L. Vorobjev, "Fiber fuse effect in microstructured fibers," IEEE Photon. Technol. Lett. 16, 180-181 (2004).
  7. K. Seo, N. Nishimura, M. Shiino, R. Yuguchi, H. Sasaki, "Evaluation of high-power in optical fiber links," Furukawa Rev. 24, 17-22 (2003).
  8. S. Namiki, K. Seo, N. Tsukiji, S. Shikii, "Challenges of Raman amplification," Proc. IEEE 94, 1024-1035 (2006).
  9. Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, R. Nagase, "Simulation of fiber fuse phenomenon in single-mode optical fibers," J. Lightw. Technol. 21, 2511-2517 (2003).
  10. Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, R. Nagase, "Fiber fuse phenomenon in step-index single-mode optical fibers," IEEE J. Quantum Electron. 40, 1113-1121 (2004).
  11. A. M. Rocha, M. Facão, A. Martins, P. S. André, "Simulation of fiber fuse effect propagation," Proc. Int. Conf. Transparent Optical Networks-Mediterranean Winter (ICTON-MW) (2009) pp. FrP.12.
  12. R. Weber, G. N. Mercer, H. S. Sidhu, B. F. Gray, "Combustion waves for gases $({\rm Le}=1)$ and solids $({\rm Le} \to {\rm Infinity})$," Proc. R. Soc. Lond. A 453, 1105-1118 (1997).
  13. P. S. André, M. Facão, A. M. Rocha, P. Antunes, A. Martins, "Evaluation of the fuse effect propagation in networks infrastructures with different types of fibers," Proc. Optical Fiber Commun. (OFC)/Nat. Fiber Opt. (NFOEC) (2010) pp. JWA10.
  14. A. I. Volpert, V. A. Volpert, V. A. Volpert, Translations of Mathematical Monographs (AMS, 2000).
  15. Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, R. Nagase, "Evaluation of high-temperature absorption coefficients of optical fibers," IEEE Photon. Technol. Lett. 16, 1008-1019 (2004).
  16. R. M. Atkins, P. G. Simpkins, A. D. Yabon, "Track of a fiber fuse: A Rayleigh instability in optical waveguides," Opt. Lett. 28, 974-976 (2003).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited