OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 29, Iss. 18 — Sep. 15, 2011
  • pp: 2725–2731

Polarization Rotator Based on Soft Glass Photonic Crystal Fiber With Liquid Crystal Core

Mohamed Farhat O. Hameed and S. S. A. Obayya

Journal of Lightwave Technology, Vol. 29, Issue 18, pp. 2725-2731 (2011)


View Full Text Article

Acrobat PDF (1025 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A rigorous study of polarization rotation in a novel design of high-tunable polarization rotator based on soft glass photonic crystal fiber (PCF) is introduced and analyzed. The suggested PCF has a central hole infiltrated with nematic liquid crystal. At a wavelength of 1.55 μm, nearly 100% polarization conversion ratio is obtained, with a device length of 558 μm. The simulation results are evaluated using the full-vectorial finite-difference method along with the full-vectorial finite-difference beam propagation method.

© 2011 IEEE

Citation
Mohamed Farhat O. Hameed and S. S. A. Obayya, "Polarization Rotator Based on Soft Glass Photonic Crystal Fiber With Liquid Crystal Core," J. Lightwave Technol. 29, 2725-2731 (2011)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-29-18-2725


Sort:  Year  |  Journal  |  Reset

References

  1. F. Heismann, R. W. Smith, "High-speed polarization scrambler with adjustable phase chirp," IEEE J. Sel. Topics Quantum Electron. 2, 311-318 (1996).
  2. I. Morita, K. Tanka, N. Edagawa, M. Suzuki, "40 Gb/s single-channel soliton transmission over transoceanic distances by reducing Gordon-Haus timing jitter and soliton-soliton interaction," J. Lightw. Technol. 17, 2506-2511 (1999).
  3. Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, M. G. Young, "Polarization rotation in asymmetric periodic loaded rib waveguides," Appl. Phys. Lett. 59, 1278-1280 (1991).
  4. S. S. A. Obayya, B. M. A. Rahmann, H. A. El-Mikati, "Vector beam propagation analysis of polarization conversion in periodically loaded waveguides," IEEE Photon. Technol. Lett. 12, 1346-1348 (2000).
  5. S. S. A. Obayya, N. Somasiri, B. M. A. Rahman, K. T. V. Grattan, "Full vectorial finite element modeling of novel polarization rotators," Opt. Quantum Electron. 35, 297-312 (2003).
  6. B. M. A. Rahman, S. S. A. Obayya, N. Somasiri, M. Rajarajan, K. T. V. Grattan, H. A. El-Mikati, "Design and characterisation of compact single-section passive polarization rotator," J. Lightw. Technol. 19, 512-519 (2001).
  7. S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, H. A. El-Mikati, "Improved design of a polarization converter based on semiconductor optical waveguide bends," Appl. Opt. 40, 5395-5401 (2001).
  8. M. J. Madou, Fundamentals of Microfabrication and Nanotechnology (CRC Press, 2011).
  9. L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, P. Bassi, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Exp. 13, 7483-7496 (2005).
  10. L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. Alkeskjold, A. Bjarklev, "Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers," Appl. Opt. 48, 497-503 (2009).
  11. M. F. O. Hameed, S. S. A. Obayya, "Analysis of polarization rotator based on nematic liquid crystal photonic crystal fiber," J. Lightw. Technol. 28, 806-815 (2010).
  12. L. Xiao, W. Jin, M. S. Demokan, H. L. Ho, Y. L. Hoo, C. Zhao, "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer," Opt. Exp. 13, 9014-9022 (2005).
  13. Y. Huang, Y. Xu, A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
  14. K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, T. P. Hansen, "Selective filling of photonic crystal fibres," J. Opt. A: Pure Appl. Opt. 7, L13-L20 (2005).
  15. D. C. Zografopoulos, E. E. Kriezis, T. D. Tsiboukis, "Photonic crystal-liquid crystal fibers for single-polarization or high-birefringence guidance," Opt. Exp. 14, 914-925 (2006).
  16. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S. Gauza, S. Wu, "Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber," Appl. Opt. 45, 2261-2264 (2006).
  17. S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, "Accurate finite element modal solution of photonic crystal fibres. Optoelectronics," IEE Proc. Optoelectron. 152, 241-246 (2005).
  18. S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, H. A. El-Mikati, "Full vectorial finite-element-based imaginary distance beam propagation solution of complex modes in optical waveguides," J. Lightw. Technol. 20, 1054-1060 (2002).
  19. A. B. Fallahkhair, K. S. Li, T. E. Murphy, "Vector finite difference modesolver for anisotropic dielectric waveguides," J. Lightw. Technol. 26, 1423-1431 (2008).
  20. S. Campbell, R. C. McPhedran, C. Martijn de Sterke, L. C. Botten, "Differential multipole method for microstructured optical fibers," J. Opt. Soc. Amer. B. 21, 1919-1928 (2004).
  21. W. C. Chew, J. M. Jin, E. Michielssen, "Complex coordinate stretching as a generalized absorbing boundary condition," Microw. Opt. Technol. Lett. 15, 363-369 (1997).
  22. S. S. A. Obayya, B. M. A. Rahman, H. A. El Mikati, "New full vectorial numerically efficient propagation algorithm based on the finite element method," J. Lightw. Technol. 18, 409-415 (2000).
  23. W. P. Huang, C. L. Xu, "Simulation of three-dimensional optical waveguides by a full-vector beam propagation method," IEEE J. Quantum Electron. 29, 2639-2649 (1993).
  24. J. Li, S. T. Wu, S. Brugioni, R. Meucci, S. Faetti, "Infrared refractive indices of liquid crystals," J. Appl. Phys. 97, 073501-073501-5 (2005).
  25. G. Ren, P. Shum, X. Yu, J. Hu, G. Wang, Y. Gong, "Polarization dependent guiding in liquid crystal filled photonic crystal fibers," Opt. Commun. 281, 1598-1606 (2008).
  26. M. W. Haakestad, T. T. Alkeskjold, M. Nielsen, L. Scolari, J. Riishede, H. E. Engan, A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).
  27. T. T. Alkeskjold, A. Bjarklev, "Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter," Opt. Lett. 32, 1707-1709 (2007).
  28. L. Wei, T. T. Alkeskjold, A. Bjarklev, "Compact design of an electrically tunable and rotatable polarizer based on a liquid crystal photonic bandgap fiber," IEEE Photon. Technol. Lett. 21, 1633-1635 (2009).
  29. J. Y. Y. Leong, Fabrication and Applications of Lead-Silicate Glass Holey Fibre for 1–1.5 microns: Nonlinearity and Dispersion Trade Offs Ph.D. dissertation Faculty of engineering, science and mathematics Optoelectronics research centre University of SouthamptonU.K.Southampton (2007).
  30. T. R. Woliñski, K. Szaniawska, K. Bondarczuk, P. Lesiak, A. W. Domañski, R. Dabrowski, E. Nowinowski-kruszelnicki2, J. Wójcik, "Propagation properties of photonic crystal fibers filled with nematic liquid crystals," Opto-Electron. Rev. 13, 177-182 (2005).
  31. T. R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, J. Wojcik, "Polarization effects in photonic liquid crystal fibers," Meas. Sci. Technol. 18, 3061-3069 (2007).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited