OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 30, Iss. 15 — Aug. 1, 2012
  • pp: 2488–2493

ALD-Assisted Multiorder Dispersion Engineering of Nanophotonic Strip Waveguides

Mikhail Erdmanis, Lasse Karvonen, Muhammad Rizwan Saleem, Mikko Ruoho, Ville Pale, Ari Tervonen, Seppo Honkanen, and Ilkka Tittonen

Journal of Lightwave Technology, Vol. 30, Issue 15, pp. 2488-2493 (2012)

View Full Text Article

Acrobat PDF (673 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We propose a new technique for the multiorder dispersion engineering of nanophotonic strip waveguides. Unlike other techniques, the method does not require wafers with customized parameters and is fully compatible with standard wafers used in nanophotonics. The dispersion management is based on the application of nanometer-thick TiO2 layer formed by atomic layer deposition. The method is simple and reliable and allows good control of dispersion up to the fourth-order terms. The additional advantages are the reduction of propagation losses and partial compensation of fabrication tolerances.

© 2012 IEEE

Mikhail Erdmanis, Lasse Karvonen, Muhammad Rizwan Saleem, Mikko Ruoho, Ville Pale, Ari Tervonen, Seppo Honkanen, and Ilkka Tittonen, "ALD-Assisted Multiorder Dispersion Engineering of Nanophotonic Strip Waveguides," J. Lightwave Technol. 30, 2488-2493 (2012)

Sort:  Year  |  Journal  |  Reset


  1. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006).
  2. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, B. Jalali, "Observation of stimulated Raman amplification in silicon waveguides," Opt. Express 11, 1731-1739 (2003).
  3. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002).
  4. I.-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C.-Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, R. M. Osgood, "Supercontinuum generation in silicon photonic wires," Opt. Express 15, 15242-15249 (2007).
  5. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006).
  6. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  7. Q. Lin, J. Zhang, P. M. Fauchet, G. P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Opt. Express 14, 4786-4799 (2006).
  8. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, A. L. Gaeta, "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Opt. Express 15, 12949-12958 (2007).
  9. A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, M. Lipson, "Frequency conversion over two-thirds of an octave in silicon nanowaveguides," Opt. Express 18, 1904-1908 (2010).
  10. B. Kuyken, X. Liu, R. M. Osgood, Jr.R. Baets, G. Roelkens, W. M. J. Green, "Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides," Opt. Express 19, 20172-20181 (2011).
  11. M. R. Lamont, B. T. Kuhlmey, C. M. de Sterke, "Multi-order dispersion engineering for optimal four-wave mixing," Opt. Express 16, 7551-7563 (2008).
  12. C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, P. St. J. Russell, "Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser," Opt. Lett. 30, 1980-1982 (2005).
  13. X. Liu, W. M. J. Green, X. Chen, I.-W. Hsieh, J. I. Dadap, Y. A. Vlasov, R. M. Osgood, Jr."Conformal dielectric overlayers for engineering dispersion and effective nonlinearity of silicon nanophotonic wires," Opt. Lett. 33, 2889-2891 (2008).
  14. R. L. Puurunen, "Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process," J. Appl. Phys. 97, 121301-1-121301-52 (2005).
  15. T. Alasaarela, D. Korn, L. Alloatti, A. Säynätjoki, A. Tervonen, R. Palmer, J. Leuthold, W. Freude, S. Honkanen, "Reduced propagation loss in silicon strip and slot waveguides coated by atomic layer deposition," Opt. Express 19, 11529-11538 (2011).
  16. COMSOL, Inc.BurlingtonMAUSACOMSOL Multiphysics http://www.comsol.com/.
  17. M. Bass, Handbook of Optics (McGraw-Hill, 1995).
  18. B. Tatian, "Fitting refractive-index data with the Sellmeier dispersion formula," Appl. Opt. 23, 4477-4485 (1984).
  19. T. Alasaarela, T. Saastamoinen, J. Hiltunen, A. Säynätjoki, A. Tervonen, P. Stenberg, M. Kuittinen, S. Honkanen, "Atomic layer deposited titanium dioxide and its application in resonant waveguide grating," Appl. Opt. 49, 4321-4325 (2010).
  20. E. Dulkeith, F. Xia, L. Schares, W. M. Green, L. Sekaric, Y. A. Vlasov, "Group index and group velocity dispersion in silicon-on-insulator photonic wires," Opt. Express 14, 3853-3863 (2006).
  21. J. Jágerská, N. Le Thomas, R. Houdré, J. Bolten, C. Moormann, T. Wahlbrink, J. Ctyroký, M. Waldow, M. Först, "Dispersion properties of silicon nanophotonic waveguides investigated with Fourier optics," Opt. Lett. 32, 2723-2725 (2007).
  22. M. A. Foster, A. C. Turner, M. Lipson, A. L. Gaeta, "Nonlinear optics in photonic nanowires," Opt. Express 16, 1300-1320 (2008).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited