OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 30, Iss. 16 — Aug. 15, 2012
  • pp: 2707–2712

Modulation Instability in Dissipative Soliton Fiber Lasers and Its Application on Cavity Net Dispersion Measurement

Junsong Peng, Li Zhan, Zhaochang Gu, Jinmei Liu, Shouyu Luo, Xuehao Shen, and Qishun Shen

Journal of Lightwave Technology, Vol. 30, Issue 16, pp. 2707-2712 (2012)


View Full Text Article

Acrobat PDF (480 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Modulation instability (MI) in passively mode-locked dissipative solitons lasers has been studied. The factors that affect MI, including the intensity of the nonlinear wave and the linear phase delay of the cavity, have been experimentally studied. It's found that MI induces sidebands in the spectrum of dissipative solitons. The sidebands can cause the pedestal on the pulse in time domain and thus limit the pulse duration. Additionally, a simple method to eliminate the sidebands is proposed and nearly pedestal free pulses are generated correspondingly. Finally, based on MI, a method to measure the cavity net dispersion is proposed and applied to two dissipative soliton lasers with different net dispersion. It's shown that the positions of the adjacent spectral sidebands can determine the intracavity net dispersion, and the measurement error is limited by the accuracy of the optical spectrum analyzer. This indicates it is a simple and precise method to measure the intracavity net dispersion.

© 2012 IEEE

Citation
Junsong Peng, Li Zhan, Zhaochang Gu, Jinmei Liu, Shouyu Luo, Xuehao Shen, and Qishun Shen, "Modulation Instability in Dissipative Soliton Fiber Lasers and Its Application on Cavity Net Dispersion Measurement," J. Lightwave Technol. 30, 2707-2712 (2012)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-30-16-2707


Sort:  Year  |  Journal  |  Reset

References

  1. E. Yoshida, M. Nakazawa, "Low-threshold 115-GHz continuous-wave modulational-instability Erbium-doped fiber laser," Opt. Lett. 22, 1409-1411 (1997).
  2. T. Pfeiffer, G. Veith, "40 GHz pulse generation using a widely tunable all-polarisation preserving Erbium fibre ring laser," Electron. Lett. 29, 1849-1850 (1993).
  3. M. Nakazawa, E. Yoshida, H. Kubota, Y. Kimura, "Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 μm using a dispersion-decreasing, Erbium-doped active soliton compressor," Electron. Lett. 30, 2038-2040 (1994).
  4. M. Nakazawa, K. Suzuki, H. A. Haus, "The modulational instability laser. I. Experiment," IEEE J. Quantum Electron. 25, 2036-2044 (1989).
  5. M. Nakazawa, K. Suzuki, H. Kubota, H. A. Haus, "High-order solitons and the modulational instability," Phy. Rev. A 39, 5768 (1989).
  6. M. Nakazawa, K. Suzuki, H. Kubota, H. A. Haus, "The modulation instability laser. II. Theory," IEEE J. Select. Top. Quantum Electron. 25, 2045-2052 (1989).
  7. M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, A. Sahara, "Ultrahigh-speed long-distance TDM and WDM soliton transmission technologies," IEEE J. Sel. Top. Quantum Electron. 6, 363-396 (2000).
  8. G. P. Agrawal, "Modulation instability induced by cross-phase modulation," Phys. Rev. Lett. 59, 880-883 (1987).
  9. A. L. Berkhoer, V. E. Zakharov, "Self excitation of waves with different polarizations in nonlinear media," Sov. Phys. JETP 31, 486-490 (1970).
  10. M. Haelterman, S. Trillo, S. Wabnitz, "Additive-modulation-instability ring laser in the normal dispersion regime of a fiber," Opt. Lett. 17, 745-747 (1992).
  11. S. Coen, M. Haelterman, "Modulational instability induced by cavity boundary conditions in a normally dispersive optical fiber," Phys. Rev. Lett. 79, 4139-4142 (1997).
  12. J. Peng, L. Zhan, Z. Gu, K. Qian, X. Hu, S. Luo, Q. Shen, "Direct generation of 4.6-nJ 78.9-fs dissipative solitons in an all-fiber net-normal-dispersion er-doped laser," IEEE Photon. Technol. Lett. 24, 98-100 (2012).
  13. X. M. Liu, D. Mao, "Compact all-fiber high-energy fiber laser with sub-300-fs duration," Opt. Exp. 18, 8847-8852 (2010).
  14. A. Cabasse, B. Ortac, G. Martel, A. Hideur, J. Limpert, "Dissipative solitons in a passively mode-locked Er-doped fiber with strong normal dispersion," Opt. Exp. 16, 19322-19329 (2008).
  15. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev, "Dissipative soliton resonances in laser models with parameter management," J. Opt. Soc. Amer. B 25, 1972-1977 (2008).
  16. D. Tang, L. Zhao, X. Wu, H. Zhang, "Soliton modulation instability in fiber lasers," Phy. Rev. A 80, (2009) Art. ID 023806.
  17. A. Chong, W. H. Renninger, F. W. Wise, "All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ," Opt. Lett. 32, 2408-2410 (2007).
  18. N. B. Chichkov, K. Hausmann, D. Wandt, U. Morgner, J. Neumann, D. Kracht, "High-power dissipative solitons from an all-normal dispersion Erbium fiber oscillator," Opt. Lett. 35, 2807-2809 (2010).
  19. K. Tamura, C. R. Doerr, H. A. Haus, E. P. Ippen, "Soliton fiber ring laser stabilization and tuning with a broad intracavity filter," IEEE Photon. Technol. Lett. 6, 697-699 (1994).
  20. L. M. Zhao, D. Y. Tang, X. A. Wu, H. Zhang, "Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter," Opt. Lett. 35, 2756-2758 (2010).
  21. C. Ouyang, P. Shum, K. Wu, J. H. Wong, X. Wu, H. Lam, S. Aditya, "12 nJ dissipative soliton from an all-fiber passively mode-locked laser with large normal dispersion," IEEE Photon. J. 3, 881-887 (2011).
  22. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, E. P. Ippen, "Ultrashort-pulse fiber ring lasers," Appl. Phys. B 65, 277-294 (1997).
  23. K. Tamura, E. Ippen, H. Haus, "Pulse dynamics in stretched-pulse fiber lasers," Appl. Phys. Lett. 67, 158-160 (1995).
  24. K. Tamura, E. P. Ippen, H. A. Haus, L. E. Nelson, "77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser," Opt. Lett. 18, 1080-1082 (1993).
  25. D. Deng, L. Zhan, Z. Gu, Y. Gu, Y. Xia, "55-fs pulse generation without wave-breaking from an all-fiber Erbium-doped ring laser," Opt. Exp. 17, 4284-4288 (2009).
  26. D. Tang, L. Zhao, "Generation of 47-fs pulses directly from an Erbium-doped fiber laser," Opt. Lett. 32, 41-43 (2007).
  27. J. Peng, L. Zhan, Z. Gu, K. Qian, S. Luo, Q. Shen, "Direct generation of 128-fs Gaussian pulses from a compensation-free fiber laser using dual mode-locking mechanisms," Opt. Commun. 285, 731-733 (2012).
  28. K. Takada, T. Kitagawa, K. Hattori, M. Yamada, M. Horiguchi, R. Hickernell, "Direct dispersion measurement of highly-Erbium-doped optical amplifiers using a low coherence reflectometer coupled with dispersive fourier spectroscopy," Electron. Lett. 28, 1889-1891 (1992).
  29. W. Knox, "In situ measurement of complete intracavity dispersion in an operating Ti: Sapphire femtosecond laser," Opt. Lett. 17, 514-516 (1992).
  30. F. Fontana, G. Bordogna, G. Grasso, M. Romagnoli, M. Midrio, P. Franco, "Evaluation and measurement of the resonant group-velocity dispersion in Erbium-doped fiber lasers," Opt. Lett. 18, 2011-2013 (1993).
  31. M. Dennis, I. Duling, III"Intracavity dispersion measurement in modelocked fibre laser," Electron. Lett. 29, 409-411 (1993).
  32. W. Renninger, A. Chong, F. Wise, "Dissipative solitons in normal-dispersion fiber lasers," Phy. Rev. A 77, (2008) Art. ID 023814.
  33. L. Zhao, D. Tang, T. Cheng, C. Lu, "Gain-guided solitons in dispersion-managed fiber lasers with large net cavity dispersion," Opt. Lett. 31, 2957-2959 (2006).
  34. K. Tamura, H. A. Haus, E. P. Ippen, "Self-starting additive pulse mode-locked Erbium fiber ring laser," Electron. Lett. 28, 2226-2228 (1992).
  35. X. Liu, "Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser," Phy. Rev. A 81, (2010) Art. ID 023811.
  36. A. Chong, W. H. Renninger, F. W. Wise, "Properties of normal-dispersion femtosecond fiber lasers," J. Opt. Soc. Amer. B 25, 140-148 (2008).
  37. F. Ö. Ilday, F. Wise, T. Sosnowski, "High-energy femtosecond stretched-pulse fiber laser with a nonlinear optical loop mirror," Opt. Lett. 27, 1531-1533 (2002).
  38. S. Coen, M. Haelterman, P. Emplit, L. Delage, L. Simohamed, F. Reynaud, "Experimental investigation of the dynamics of a stabilized nonlinear fiber ring resonator," J. Opt. Soc. Amer. B 15, 2283-2293 (1998).
  39. D. Tang, J. Wu, L. Zhao, L. Qian, "Dynamic sideband generation in soliton fiber lasers," Opt. Commun. 275, 213-216 (2007).
  40. W. S. Man, H. Y. Tan, M. S. Demokan, P. K. A. Wai, D. Y. Tang, "Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser," J. Opt. Soc. Amer. B 17, 28-33 (2000).
  41. K. Tamura, E. Ippen, H. Haus, "Optimization of filtering in soliton fiber lasers," IEEE Photon. Technol. Lett. 6, 1433-1435 (1994).
  42. R. Ulrich, S. Rashleigh, W. Eickhoff, "Bending-induced birefringence in single-mode fibers," Opt. Lett. 5, 273-275 (1980).
  43. X. Liu, "Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal- dispersion and high nonlinearity," Opt. Exp. 17, 22401-22416 (2009).
  44. K. Tamura, L. E. Nelson, H. A. Haus, E. P. Ippen, "Soliton versus nonsoliton operation of fiber ring lasers," Appl. Phys. Lett. 64, 149-151 (1994).
  45. S. Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett. 28, 806-807 (1992).
  46. M. L. Dennis, I. N. Duling, III"Experimental study of sideband generation in femtosecond fiber lasers," IEEE J. Quantum Electron. 30, 1469-1477 (1994).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited