OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 30, Iss. 17 — Sep. 1, 2012
  • pp: 2853–2862

All-InGaN Phosphorless White Light Emitting Diodes: An Efficiency Estimation

Christopher Kölper, Matthias Sabathil, Martin Mandl, Martin Strassburg, and Bernd Witzigmann

Journal of Lightwave Technology, Vol. 30, Issue 17, pp. 2853-2862 (2012)


View Full Text Article

Acrobat PDF (1581 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this theoretical study we investigate the efficiency potential of monolithic white light emitting diodes (LEDs) that are free of wavelength-converting phosphors and are based solely on the InGaN material system. For that purpose we develop a numerical model that handles multiple active layers of different emission wavelength and takes photon reabsorption and -emission as well as internal non-radiative and optical losses into account. It is applied both to thin film structures as well as novel nanorod LEDs featuring disc-like active layers. In both cases, the active layers may either consist of multiple thin quantum wells or a single thick, bulk-like InGaN layer.

© 2012 IEEE

Citation
Christopher Kölper, Matthias Sabathil, Martin Mandl, Martin Strassburg, and Bernd Witzigmann, "All-InGaN Phosphorless White Light Emitting Diodes: An Efficiency Estimation," J. Lightwave Technol. 30, 2853-2862 (2012)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-30-17-2853


Sort:  Year  |  Journal  |  Reset

References

  1. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, M. G. Craford, "Status and future of high-power light-emitting diodes for solid-state lighting," J. Display Technol. 3, 160-175 (2007).
  2. J. Baur, F. Baumann, M. Peter, K. Engl, U. Zehnder, J. Off, V. Kuemmler, M. Kirsch, J. Strauss, R. Wirth, K. Streubel, B. Hahn, "Status of high efficiency and high power ThinGaN-LED development," Phys. Status Solidi C 6, 905-908 (2009).
  3. Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, T. Mukai, "White light emitting diodes with super-high luminous efficacy," J. Phys. D: Appl. Phys. 43, 354002 (2010).
  4. B. Hahn, K. Engl, M. Klein, "Submerged electrodes boost high-brightness LED output," Compound Semicond. 15, 25 (2010).
  5. B. Hahn, "High power LEDs for solid state lighting," Proc. IEEE Eur. Solid-State Device Res. Conf. (2010) pp. 57-63.
  6. Office of Energy Efficiency and Renewable Energy“Multi-year program plan: Solid-state lighting research and development,” U.S. Dept. of Energy Tech. Rep. (2011).
  7. A. Setlur, "Phosphors for LED-based solid-state lighting," Electrochem. Soc. Interface 33 (2009).
  8. S. Allen, A. Steckl, "A nearly ideal phosphor-converted white light-emitting diode," Appl. Phys. Lett. 92, 143309 (2008).
  9. M. Yamada, Y. Narukawa, T. Mukai, "Phosphor free high-luminous-efficiency white light-emitting diodes composed of InGaN multi-quantum well," Jpn. J. Appl. Phys. 41, 246 (2002).
  10. B. Damilano, N. Grandjean, C. Pernot, J. Massies, "Monolithic white light emitting diodes based on InGaN/GaN multiple-quantum wells," Jpn. J. Appl. Phys. 40, 918 (2001).
  11. C. Huang, C. Lu, T. Tang, J. Huang, C. Yang, "Phosphor-free white-light light-emitting diode of weakly carrier-density-dependent spectrum with prestrained growth of InGaN/GaN quantum wells," Appl. Phys. Lett. 90, (2007) Art. ID 151122.
  12. C. Chen, S. Chang, Y. Su, J. Sheu, J. Chen, C. Kuo, Y. Lin, "Nitride-based cascade near white light-emitting diodes," IEEE Photon. Technol. Lett. 14, 908-910 (2002).
  13. I. Park, J. Kim, M. Kwon, C. Cho, J. Lim, S. Park, "Phosphor-free white light-emitting diode with laterally distributed multiple quantum wells," Appl. Phys. Lett. 92, (2008) Art. ID 091110.
  14. S. Lee, H. Paek, H. Kim, T. Jang, Y. Park, "Monolithic InGaN-based white light-emitting diodes with blue, green, and amber emissions," Appl. Phys. Lett. 92, (2008) Art. ID 081107.
  15. P. Stauss, M. Mandl, P. Rode, A. Laubsch, A. Biebersdorf, R. Windisch, B. Galler, P. Drechsel, U. Steegmüller, "Monolitically grown dual wavelength InGaN LEDs for improved CRI," Phys. Status Solidi C 8, 2396-2398 (2011).
  16. B. Damilano, P. Demolon, J. Brault, T. Huault, F. Natali, J. Massies, "Blue-green and white color tuning of monolithic light emitting diodes," J. Appl. Phys. 108, (2010) Art. ID 073115.
  17. B. Galler, M. Sabathil, A. Laubsch, T. Meyer, L. Hoeppel, G. Kraeuter, H. Lugauer, M. Strassburg, M. Peter, A. Biebersdorf, U. Steegmueller, B. Hahn, "Green high-power light sources using InGaN multi-quantum-well structures for full conversion," Phys. Status Solidi C 8, 2369-2371 (2011).
  18. M. Peter, "Osram explores the route to high-performance greens," Compound Semicond. 14, 16-18 (2008).
  19. A. Laubsch, M. Sabathil, B. Hahn, K. Streubel, "Licht aus Kristallen," Physik J. 9, 23-28 (2010).
  20. S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, "High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures," Jpn. J. Appl. Phys. 34, 797 (1995).
  21. A. Strittmatter, J. E. Northrup, N. M. Johnson, M. V. Kisin, P. Spiberg, H. El-Ghoroury, A. Usikov, A. Syrkin, "Semi-polar nitride surfaces and heterostructures," Phys. Status Solidi B 248, 561-573 (2011).
  22. H. J. Kim, S. Choi, S.-S. Kim, J.-H. Ryou, P. D. Yoder, R. D. Dupuis, A. M. Fischer, K. Sun, F. A. Ponce, "Improvement of quantum efficiency by employing active-layer-friendly lattice-matched InAlN electron blocking layer in green light-emitting diodes," Appl. Phys. Lett. 96, (2010) Art. ID 101102.
  23. S.-C. Ling, T.-C. Lu, S.-P. Chang, J.-R. Chen, H.-C. Kuo, S.-C. Wang, "Low efficiency droop in blue-green m-plane InGaN/GaN light emitting diodes," Appl. Phys. Lett. 96, (2010) Art. ID 231101.
  24. M. Peter, A. Laubsch, W. Bergbauer, T. Meyer, M. Sabathil, J. Baur, B. Hahn, "New developments in green LEDs," Phys. Status Solidi A 206, 1125-1129 (2009).
  25. M. Peter, A. Laubsch, P. Stauss, A. Walter, J. Baur, B. Hahn, "Green ThinGaN power-LED demonstrates 100 lm," Phys. Status Solidi C 5, 2050-2052 (2008).
  26. S. Yamamoto, Y. Zhao, C. Pan, R. Chung, K. Fujito, J. Sonoda, S. DenBaars, S. Nakamura, "High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar (20–21) GaN substrates," Appl. Phys. Exp. 3, (2010) Art. ID 122102.
  27. T. Mukai, "Recent progress in group-III nitride light-emitting diodes," IEEE J. Sel. Topics Quantum Electron. 8, 264-270 (2002).
  28. W. Lundin, "Single quantum well deep-green LEDs with buried InGaN/GaN short-period superlattice," J. Cryst. Growth 315, 267-271 (2011).
  29. A. Kikuchi, M. Kawai, M. Tada, K. Kishino, "InGaN/GaN multiple quantum disk nanocolumn light-emitting diodes grown on (111) Si substrate," Jpn. J. Appl. Phys. 43, 1524 (2004).
  30. H. Kim, Y. Cho, H. Lee, S. Kim, S. Ryu, D. Kim, T. Kang, K. Chung, "High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays," Nano Lett. 4, 1059-1062 (2004).
  31. Y. Kawakami, A. Kaneta, L. Su, Y. Zhu, K. Okamoto, M. Funato, A. Kikuchi, K. Kishino, "Optical properties of InGaN/GaN nanopillars fabricated by postgrowth chemically assisted ion beam etching," J. Appl. Phys. 107, (2010) Art. ID 023522.
  32. C. Böcklin, R. Veprek, S. Steiger, B. Witzigmann, "Computational study of an InGaN/GaN nanocolumn light-emitting diode," Phys. Rev. B 81, (2010) Art. ID 155306.
  33. F. Sacconi, G. Penazzi, A. Pecchia, M. Auf der Maur, A. Di Carlo, "Optoelectronic and transport properties of nanocolumnar InGaN/GaN quantum disk LEDs," Proc. SPIE (2010) pp. 75970D.
  34. H. Sekiguchi, K. Kishino, A. Kikuchi, "Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate," Appl. Phys. Lett. 96, (2010) Art. ID 231104.
  35. K. Kishino, A. Kikuchi, H. Sekiguchi, S. Ishizawa, "InGaN/GaN nanocolumn LEDs emitting from blue to red," Proc. SPIE (2007) pp. 64730T.
  36. H.-W. Lin, Y.-J. Lu, H.-Y. Chen, H.-M. Lee, S. Gwo, "InGaN/GaN nanorod array white light-emitting diode," Appl. Phys. Lett. 97, (2010) Art. ID 073101.
  37. W. Guo, A. Banerjee, P. Bhattacharya, B. S. Ooi, "InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon," Appl. Phys. Lett. 98, (2011) Art. ID 193102.
  38. C. Sun, T. Lee, Y. Lo, C. Chen, S. Tsai, "Light extraction enhancement of GaN-based LEDs through passive/active photon recycling," Opt. Commun. 284, 4862-4868 (2011).
  39. E. Sari, S. Nizamoglu, T. Ozel, H. Demir, "Blue quantum electroabsorption modulators based on reversed quantum confined stark effect with blueshift," Appl. Phys. Lett. 90, 011101 (2007).
  40. F. Römer, M. Deppner, Z. Andreev, C. Kölper, M. Sabathil, M. Strassburg, J. Ledig, S. Li, A. Waag, B. Witzigmann, "Luminescence and efficiency optimization of InGaN/GaN core-shell nanowire LEDs by numerical modelling," Proc. SPIE 8255, 82550H (2012).
  41. C. Kölper, M. Sabathil, F. Römer, M. Mandl, M. Strassburg, B. Witzigmann, "Core-shell InGaN nanorod light emitting diodes: Electronic and optical device properties," Phys. Stat. Solidi A DOI: 10.1002/pssa.201228178.
  42. M. Coltrin, J. Tsao, Y. Ohno, "Limits on the maximum attainable efficiency for solid-state lighting," Proc. SPIE (2007) pp. 684102.
  43. J. Phillips, "Research challenges to ultra-efficient inorganic solid-state lighting," Laser & Photon. Rev. 1, 307-333 (2007).
  44. P. Johnson, R. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370 (1972).
  45. V. Haerle, B. Hahn, S. Kaiser, A. Weimar, S. Bader, F. Eberhard, A. Plössl, D. Eisert, "High brightness LEDs for general lighting applications using the new ThinGaN-technology," Phys. Status Solidi A 201, 2736-2739 (2004).
  46. M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, J. Cho, "Polarization of light emission by 460 nm GaInN/GaN light-emitting diodes grown on (0001) oriented sapphire substrates," Appl. Phys. Lett. 91, (2007) Art. ID 051117.
  47. http://www.semitech.us/products/SiLENSe/ (2012).
  48. A. Laubsch, W. Bergbauer, M. Sabathil, M. Strassburg, H. Lugauer, M. Peter, T. Meyer, G. Brüderl, J. Wagner, N. Linder, K. Streubel, B. Hahn, "Luminescence properties of thick InGaN quantum-wells," Phys. Status Solidi C 6, S885-S888 (2009).
  49. J. Piprek, "Efficiency droop in nitride-based light-emitting diodes," Phys. Status Solidi A 207, 2217-2225 (2010).
  50. A. David, N. F. Gardner, "Droop in III-nitrides: Comparison of bulk and injection contributions," Appl. Phys. Lett. 97, (2010) Art. ID 193508.
  51. A. Laubsch, M. Sabathil, W. Bergbauer, M. Strassburg, H. Lugauer, M. Peter, S. Lutgen, N. Linder, K. Streubel, J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, "On the origin of IQE-‘droop’ in InGaN LEDs," Phys. Status Solidi C 6, S913-S916 (2009).
  52. J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, S. Lutgen, "On the importance of radiative and Auger losses in GaN-based quantum wells," Appl. Phys. Lett. 92, (2008) Art. ID 261103.
  53. B. Pasenow, S. W. Koch, J. Hader, J. V. Moloney, M. Sabathil, N. Linder, S. Lutgen, "Auger losses in GaN-based quantum wells: Microscopic theory," Phys. Status Solidi C 6, S864-S868 (2009).
  54. E. Kioupakis, P. Rinke, K. T. Delaney, C. G. Van de Walle, "Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes," Appl. Phys. Lett. 98, (2011) Art. ID 161107.
  55. Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, M. R. Krames, "Auger recombination in InGaN measured by photoluminescence," Appl. Phys. Lett. 91, (2007) Art. ID 141101.
  56. B. Galler, P. Drechsel, R. Monnard, P. Rode, P. Stauss, S. Froehlich, W. Bergbauer, M. Binder, M. Sabathil, B. Hahn, J. Wagner, "Influence of indium content and temperature on Auger-like recombination in InGaN quantum wells grown on (111)silicon substrates," .
  57. M. Deppner, M. Bjelica, F. Römer, B. Witzigmann, "Computational study of multi-color InGaN/GaN nanowire LEDs with continuously varied indium composition," Proc. SPIE 8255, 82550G (2012).
  58. A. Neumann, J. Wierer, W. Davis, Y. Ohno, S. Brueck, J. Tsao, "Four-color laser white illuminant demonstrating high color-rendering quality," Opt. Exp. 19, A982-A990 (2011).
  59. “Method of measuring and specifying colour rendering properties of light sources,” C. Int. de l'EclairageViennaAustria CIE pub. 13.3–1995 (1995).
  60. “The basics of photometry,” C. Int. de l'EclairageViennaAustria CIE 18.2–1983 (1983).
  61. B. Flannery, W. Press, S. Teukolsky, W. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge Univ., 1992).
  62. J. Tsao, M. Coltrin, M. Crawford, J. Simmons, "Solid-state lighting: An integrated human factors, technology, and economic perspective," Proc. IEEE 98, 1162-1179 (2010).
  63. Extracted and extrapolated for productive OSRAM LEDs in the range of 440 nm to 550 nm.
  64. H. Kuhn, "Classical aspects of energy transfer in molecular systems," J. Chem. Phys. 53, 101-108 (1970).
  65. K. Drexhage, "Influence of a dielectric interface on fluorescence decay time," J. Lumin. 1, 693-701 (1970).
  66. E. Snoeks, A. Lagendijk, A. Polman, "Measuring and modifying the spontaneous emission rate of erbium near an interface," Phys. Rev. Lett. 74, 2459-2462 (1995).
  67. R. R. Chance, A. Prock, R. Silbey, "Lifetime of an emitting molecule near a partially reflecting surface," J. Chem. Phys. 60, 2744-2748 (1974).
  68. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nature Mater. 3, 601-605 (2004).
  69. W. Bergbauer, M. Strassburg, C. Kölper, N. Linder, C. Roder, J. Lähnemann, A. Trampert, S. Fündling, S. Li, H.-H. Wehmann, A. Waag, "Continuous-flux MOVPE growth of position-controlled N-face GaN nanorods and embedded InGaN quantum wells," Nanotechnol. 21, 305201 (2010).
  70. W. Bergbauer, M. Strassburg, C. Kölper, N. Linder, C. Roder, J. Lähnemann, A. Trampert, S. Fündling, S. Li, H.-H. Wehmann, A. Waag, "N-face GaN nanorods: Continuous-flux MOVPE growth and morphological properties," J. Cryst. Growth 315, 164-167 (2011).
  71. T. Eriksson, K.-D. Lee, B. Heidari, P. Rode, W. Bergbauer, M. Mandl, C. Kölper, M. Strassburg, "Fabrication of hole pattern for position-controlled MOVPE-grown GaN nanorods with highly precise nanoimprint technology," Proc. SPIE (2011) pp. 797015.
  72. S. Hersee, X. Sun, X. Wang, "The controlled growth of GaN nanowires," Nano Lett. 6, 1808-1811 (2006).
  73. R. Colby, Z. Liang, I. Wildeson, D. Ewoldt, T. Sands, R. Garcia, E. Stach, "Dislocation filtering in GaN nanostructures," Nano Lett. 10, 1568-1573 (2010).
  74. D. P. Fussell, R. C. McPhedran, C. Martijn de Sterke, "Three-dimensional Green's tensor, local density of states, and spontaneous emission in finite two-dimensional photonic crystals composed of cylinders," Phys. Rev. E 70, (2004) Art. ID 066608.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited