OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 30, Iss. 17 — Sep. 1, 2012
  • pp: 2870–2875

Fabrication of a Multimode Interference Device in a Low-Loss Flat-Fiber Platform Using Physical Micromachining Technique

Sumiaty Ambran, Christopher Holmes, James C. Gates, Andrew S. Webb, Lewis G. Carpenter, Faisal Rafiq Mahamd Adikan, Peter G. R. Smith, and Jayanta K. Sahu

Journal of Lightwave Technology, Vol. 30, Issue 17, pp. 2870-2875 (2012)


View Full Text Article

Acrobat PDF (769 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A physical micromachining technique is demonstrated in a low-loss flat-fiber substrate to fabricate a multimode interference (MMI) device. The flat-fiber substrate is a low-index-contrast material; however, by making use of two physically micromachined trenches, lateral confinement is achieved providing high index contrast for the MMI region. A 1 x 3 MMI device exhibiting 1.89 dB of excess loss has been demonstrated.

© 2012 IEEE

Citation
Sumiaty Ambran, Christopher Holmes, James C. Gates, Andrew S. Webb, Lewis G. Carpenter, Faisal Rafiq Mahamd Adikan, Peter G. R. Smith, and Jayanta K. Sahu, "Fabrication of a Multimode Interference Device in a Low-Loss Flat-Fiber Platform Using Physical Micromachining Technique," J. Lightwave Technol. 30, 2870-2875 (2012)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-30-17-2870


Sort:  Year  |  Journal  |  Reset

References

  1. L. B. Soldano, E. C. M. Penning, "Optical multi-mode interference devices based on self-imaging: Principles and application," J. Lightw. Technol. 13, 615-627 (1995).
  2. M. Mayeh, J. Viegas, P. Srinivasan, P. Marques, J. L. Santos, E. G. Johnson, F. Farahi, "Design and fabrication of slotted multimode interference devices for chemical and biological sensing," J. Sensor 470175-1-470175-11 (2009).
  3. Z. Jin, C. J. Kaalund, G. Peng, "Novel approach to design high performance large-port-count switches in low-index-contrast materials based on cascaded multimode interference couplers," IEEE J. Quantum Electron. 41, 1548-1551 (2005).
  4. C. Holmes, H. E. Major, J. C. Gates, C. B. E. Gawith, P. G. R. Smith, "Period adapted Bragg mirror multimode interference device," Proc. Conf. Lasers Electro-Opt./Quantum Electron. Laser Sci. Conf. (2009) pp. 1-2.
  5. M. H. Ibrahim, N. M. Kassim, A. B. Mohammad, M. K. Chin, S. Y. Lee, "Multimode interference optical splitter based on photodefinable benzocyclobutene (BCB 4024-40) polymer," Opt. Eng. 46, 013401-1-013401-4 (2007).
  6. H. Chen, D. T. K. Tong, "Two-dimensional symmetric multimode interferences in silicon square waveguide," IEEE Photon. Technol. Lett. 17, 801-803 (2005).
  7. A. S. Webb, F. R. M. Adikan, J. K. Sahu, R. J. Standish, C. B. E. Gawith, J. C. Gates, P. G. R. Smith, D. N. Payne, "MCVD planar substrates for UV-written waveguide devices," Electron. Lett. 43, 517-519 (2007).
  8. F. R. M. Adikan, S. Sandoghchi, W. Chong, R. Simpson, M. Mahdi, A. Webb, J. Gates, C. Holmes, "Direct UV written optical waveguides in flexible glass flat fibre chips," IEEE J. Sel. Topics Quantum Electron. .
  9. X. Wang, R. T. Chen, "Image enhanced polymer-based multimode interference coupler covering C and L bands using deeply etched air trenches," Appl. Phys. Lett. 90, 111106-1-111106-3 (2007).
  10. J. Z. Huang, M. H. Hu, J. Fujita, R. Scarmozzino, R. M. Osgood, "High-performance metal-clad multimode interference devices for low-index-contrast material systems," IEEE Photon. Technol. Lett. 10, 561-563 (1998).
  11. C. J. Kaalund, Z. Jin, "Novel multimode interference devices for low index contrast materials systems featuring deeply etched air trenches," Opt. Commun. 250, 292-296 (2005).
  12. M. K. Chin, C. W. Lee, S. Y. Lee, S. Darmawan, "High-index-contrast waveguides and devices," Appl. Opt. 44, 3077-3086 (2005).
  13. Y. Ma, S. P. L. Wang, S. T. Ho, "Ultracompact multimode interference 3-dB coupler with strong lateral confinement by deep dry etching," IEEE Photon. Technol. Lett. 12, 492-494 (2000).
  14. L. G. Carpenter, C. Holmes, H. L. Rogers, P. G. R. Smith, J. C. Gates, "Integrated optic glass microcantilevers with Bragg grating interrogation," Opt. Exp. 18, 23296-23301 (2010).
  15. K. Okamoto, Multimode Interference (MMI) Device (Academic, 2006) pp. 46-55.
  16. A. Hosseini, H. Subbaraman, D. Kwong, Y. Zhang, R. T. Chen, "Optimum access waveguide width for 1 x N multimode interference couplers on silicon nanomembrane," Opt. Lett. 35, 2864-2866 (2010).
  17. M. Zhang, R. Malureanu, A. C. Kruger, M. Kristensen, "1 x 3 beam splitter for TE polarization based on self-imaging phenomena in photonic crystal waveguides," Opt. Exp. 18, 14944-14949 (2010).
  18. H. L. Rogers, S. Ambran, C. Holmes, P. G. R. Smith, J. C. Gates, "In situ loss measurement of direct UV written waveguides using integrated Bragg gratings," Opt. Lett. 35, 2849-2851 (2010).
  19. M. Bruendel, D. G. Rabus, "1 x 2 and 1 x 3 multimode interference couplers fabricated by hot embossing and DUV-induced modification of polymers," Proc. 19th Annu. Meet. IEEE Conf. Lasers Electro-Opt. Soc. (2006) pp. 326-327.
  20. P. A. Besse, E. Gini, M. Bachmann, H. Melchior, "New 2 x 2 and 1 x 3 multimode interference couplers with free selection of power splitting ratios," J. Lightw. Technol. 14, 2286-2293 (1996).
  21. J. M. Hong, H. H. Ryu, S. Y. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. Woo, S. Kim, O. Beom-Hoan, "Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application," IEEE Photon. Technol. Lett. 15, 72-74 (2003).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited