OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 30, Iss. 20 — Oct. 15, 2012
  • pp: 3263–3272

New Design of a Thulium–Aluminum-Doped Fiber Amplifier Based on Macro-Bending Approach

Siamak Dawazdah Emami, Hairul Azhar Abdul Rashid, S. Z. M. Yasin, K. A. M. Shariff, M. I. Zulkifli, Zulfadzli Yusoff, Harith Ahmad, and Sulaiman Wadi Harun

Journal of Lightwave Technology, Vol. 30, Issue 20, pp. 3263-3272 (2012)


View Full Text Article

Acrobat PDF (2414 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A new method for gain enhancement in a S-band thulium-doped fiber amplifier (TDFA) co-doped with aluminum is demonstrated using a macro-bending approach. The macrobending of the doped fiber in a small radius suppresses both amplified spontaneous emissions (ASEs) at 800 and 1800 nm band and thus increases the population inversion in the S-band region. The numerical aperture and core radius of the doped fiber are optimized so that 800 nm ASE propagates with higher order modes to achieve a significant suppression while the loss is minimum in the S-band region. Meanwhile, the 1050 nm pump wavelength should propagate in the fundamental mode to maximize the overlap factor and thulium ion absorption so that the ASE loss is maximum at the 1800 nm region. Gain enhancements of about 5–8 dB are obtained with macrobending at the wavelength region between 1420 and 1470 nm.

© 2012 IEEE

Citation
Siamak Dawazdah Emami, Hairul Azhar Abdul Rashid, S. Z. M. Yasin, K. A. M. Shariff, M. I. Zulkifli, Zulfadzli Yusoff, Harith Ahmad, and Sulaiman Wadi Harun, "New Design of a Thulium–Aluminum-Doped Fiber Amplifier Based on Macro-Bending Approach," J. Lightwave Technol. 30, 3263-3272 (2012)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-30-20-3263


Sort:  Year  |  Journal  |  Reset

References

  1. T. Sakamoto, S. Aozasa, M. Yamada, M. Shimizu, "Hybrid fiber amplifiers consisting of cascaded TDFA and EDFA for WDM signals," J. Lightw. Technol. 24, 2287-2295 (2006).
  2. P. R. Watekar, W. T. Han, "A small-signal power model for Tm-doped silica-glass optical fiber amplifier," IEEE Photon. Technol. Lett. 18, 2035-2037 (2006).
  3. T. Komukai, "Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47 μm," IEEE J. Quantum Electron. 31, 1880-1889 (1995).
  4. P. R. Watekar, S. Ju, W. T. Han, "Analysis of 1064-nm pumped Tm-doped silica glass fiber amplifier operating at 1470 nm," J. Lightw. Technol. 25, 1045-1052 (2007).
  5. B. Faure, W. Blanc, B. Dussardier, G. Monnom, "Improvement of the Tm3+:3H4 level lifetime in silica optical fibers by lowering the local phonon energy," J. Non-Crystall. Solids 353, 2767-2773 (2007).
  6. B. Faure, W. Blanc, B. Dussardier, G. Monnom, P. Peterka, "Thulium-doped silica-fiber based S-band amplifier with increased efficiency by aluminum co-doping," presented at the Opt. Amplif. Appl. Conf./Integr. Photon. Res., Tech. Dig. San FranciscoCA (2004).
  7. P. Peterka, B. Faure, W. Blanc, M. Karásek, B. Dussardier, "Theoretical modelling of S-band thulium-doped silica fibre amplifiers," Opt. Quantum Electron. 36, 201-212 (2004).
  8. J. Michael, F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers (CRC Press, 2001).
  9. S. D. Agger, J. H. Povlsen, "Emission and absorption cross section of thulium doped silica fibers," Opt. Exp. 14, 50-57 (2006).
  10. P. Peterka, I. Kasik, A. Dhar, B. Dussardier, W. Blanc, "Theoretical modeling of fiber laser at 810 nm based on thulium-doped silica fibers with enhanced 3H4 level lifetime," Opt. Exp. 19, 2773-2781 (2011).
  11. C. A. Evans, Z. Ikonic, B. Richards, P. Harrison, A. Jha, "Theoretical modeling of a 2 μm Tm3+-doped tellurite fiber laser: The influence of cross relaxation," J. Lightw. Technol. 27, 4026-4032 (2009).
  12. C. Floridia, M. T. Carvalho, M. L. Sundheimer, A. S. L. Gomes, "Modeling the distributed gain of single (1050 nm or 1400 nm) and dual-wavelength (800 nm +1050 nm or 800 nm +1410 nm) pumped TDFAs," Proc. Opt. Fiber Commun. Conf. (2004) pp. 23-27.
  13. S. S. H. Yam, Y. Akasaka, Y. Kubota, H. Inoue, K. Parameswaran, "Novel pumping schemes for fluoride-based thulium-doped fiber amplifier at 690 and 1050 nm (or 1400 nm)," IEEE Photon. Technol. Lett. 17, 1001-1003 (2005).
  14. T. Kasamatsu, Y. Yano, T. Ono, "1.49-μm-band gain-shifted thulium-doped fiber amplifier for WDM transmission systems," J. Lightw. Technol. 20, 1826-1838 (2002).
  15. S. D. Emami, S. W. Harun, F. Abd-rahman, H. Ahmad, "Effect of an auxiliary pump on performance of TDFA," Laser Phys. 18, 977-982 (2008).
  16. S. D. Emami, P. Hajireza, F. Abd-Rahman, H. A. Abdul-Rashid, H. Ahmad, S. W. Harun, "Wide-band hybrid amplifier operating in s-band region," Progr. Electromagn. Res., PIER 102, 301-313 (2010).
  17. S. Aozasa, H. Masuda, M. Shimizu, M. Yamada, "Highly efficient S-band thulium-doped fiber amplifier employing high-thulium-concentration doping technique," J. Lightw. Technol. 25, 2108-2114 (2007).
  18. S. S. H. Yam, J. Kim, "Ground state absorption in thulium-doped fiber amplifier: Experiment and modeling," IEEE J. Quantum Electron. 12, 797-803 (2006).
  19. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, 1994).
  20. D. Marcuse, "Field deformation and loss caused by curvature of optical fibers," J. Opt. Soc. Amer. 66, 311-320 (1976).
  21. D. Marcuse, "Curvature loss formula for optical fibers," J. Opt. Soc. Amer. B 66, 216-220 (1976).
  22. D. Marcuse, "Influence of curvature on the losses of doubly clad fibers," Appl. Opt. 21, 4208-4213 (1982).
  23. D. Marcuse, Light Transmission Optics (Van Nostrand, 1982) pp. 406-414.
  24. S. A. Daud, S. D. Emami, K. S. Mohamed, N. M. Yusoff, L. Aminudin, H. A. Abdul-Rashid, S. W. Harun, H. Ahmad, M. R. Mokhtar, Z. Yusoff, F. A. Rahman, "Gain and noise figure improvements in a shorter wavelength region of EDFA using a macro-bending approach," Laser Phys. 18, 1-3 (2008).
  25. S. A. Daud, S. D. Emami, K. S. Mohamed, H. A. Abdul-Rashidi, S. W. Harun, H. Ahmad, M. R. Mokhtarl, Z. Yusoff', F. A. Rahman, "Shorter wavelength gain shift in EDFA using a macro-bending approach," Proc. IEEE Photon. Global Conf. (2008) pp. 1-3.
  26. A. B. Sharma, A. H. Ai-Ani, S. J. Halme, "Constant-curvature loss in monomode fibers: An experimental investigation," Appl. Opt. 23, 3297-3301 (1984).
  27. R. T. Schermer, H. Cole, "Improved bend loss formula verified for optical fiber by simulation and experiment," IEEE J. Quantum Electron. 43, 899-909 (2007).
  28. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 1997).
  29. T. Kasamatsu, Y. Yano, H. Sekita, "1.50-mm-band gain-shifted thulium-doped fiber amplifier with 1.05- and 1.56-mm dual-wavelength pumping," Opt. Lett. 24, 1684-1686 (1999).
  30. S. Aozasa, T. Sakamoto, T. Kanamori, K. Hoshino, K. Kobayashi, M. Shimizu, "Tm-doped fiber amplifiers for 1470-nm-band WDM signals," IEEE Photon. Technol. Lett. 12, 1331-1333 (2000).
  31. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley, 1994).
  32. J. C. Martin, "Erbium transversal distribution influence on the effectiveness of a doped fiber: Optimization of its performance," Opt. Commun. 194, 331-339 (2001).
  33. S. D. Emami, H. A. Abdul-Rashid, H. Ahmad, A. Ahmadi, S. W. Harun, "Effect of transverse distribution profile of thulium on the performance of thulium-doped fibre amplifiers," Ukr. J. Phys. Opt. 13, 74-81 (2011).
  34. J. R. James, A. W. Lan, Optical Fiber Communication System Comprising Mode-Stripping Means U.S. Patent 4 912 523 (1990).
  35. M. Karasek, "Optimum design of Er3+/Yb3+ co-doped fibers for large signal high-pump-power applications," IEEE J. Quantum Electron. 33, 1699-1705 (1997).
  36. M. Eichhorn, "Numerical modeling of Tm-doped double-clad fluoride fiber amplifiers," IEEE J. Quantum Electron. 41, 1574-1581 (2005).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited