OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 30, Iss. 20 — Oct. 15, 2012
  • pp: 3273–3280

Performance and Power Dissipation Comparisons Between 28 Gb/s NRZ, PAM, CAP and Optical OFDM Systems for Data Communication Applications

J. L. Wei, J. D. Ingham, D. G. Cunningham, R. V. Penty, and I. H. White

Journal of Lightwave Technology, Vol. 30, Issue 20, pp. 3273-3280 (2012)


View Full Text Article

Acrobat PDF (900 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Theoretical investigations have been carried out to analyze and compare the link power budget and power dissipation of non-return-to-zero (NRZ), pulse amplitude modulation-4 (PAM-4), carrierless amplitude and phase modulation-16 (CAP-16) and 16-quadrature amplitude modulation-orthogonal frequency division multiplexing (16-QAM-OFDM) systems for data center interconnect scenarios. It is shown that for multimode fiber (MMF) links, NRZ modulation schemes with electronic equalization offer the best link power budget margins with the least power dissipation for short transmission distances up to 200 m; while OOFDM is the only scheme which can support a distance of 300 m albeit with power dissipation as high as 4 times that of NRZ. For short single mode fiber (SMF) links, all the modulation schemes offer similar link power budget margins for fiber lengths up to 15 km, but NRZ and PAM-4 are preferable due to their system simplicity and low power consumption. For lengths of up to 30 km, CAP-16 and OOFDM are required although the schemes consume 2 and 4 times as much power respectively compared to that of NRZ. OOFDM alone allows link operation up to 35 km distances.

© 2012 IEEE

Citation
J. L. Wei, J. D. Ingham, D. G. Cunningham, R. V. Penty, and I. H. White, "Performance and Power Dissipation Comparisons Between 28 Gb/s NRZ, PAM, CAP and Optical OFDM Systems for Data Communication Applications," J. Lightwave Technol. 30, 3273-3280 (2012)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-30-20-3273

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited