Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 30,
  • Issue 8,
  • pp. 1025-1031
  • (2012)

Etched-Core Fiber Bragg Grating Sensors Integrated With Microfluidic Channels

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we demonstrate a fiber Bragg grating sensor for bio-chemical detection. In the sensor area, the fiber has been chemically etched to the core with a diameter of 7 μm. Due to increased index contrast, the etched-core fiber Bragg grating supports multiple guided modes which respond differently to the refractive index of the surrounding medium, temperature and the strain. An asymmetric adiabatic taper is created between the etched and the unetched parts of the fiber resulting in excitation of both the symmetrical and the asymmetrical modes which can be interrogated with an erbium doped fiber amplifier amplified spontaneous emission source. The sensor is integrated with a Polydimethylsiloxane (PDMS) microfluidic channel for introduction of chemicals to be tested. A refractive index sensitivity of 92 nm/riu was achieved using the 3rd order mode. Further the sensor can simultaneously measure the refractive index, temperature and strain to an accuracy of 1 × 10<sup>-4</sup>, 0.32°C and 10 με assuming a wavelength resolution of 0.01 nm. By using signal processing, these resolutions can be improved by a factor of 10.

© 2011 IEEE

PDF Article
More Like This
Femtosecond laser written optofluidic sensor: Bragg grating waveguide evanescent probing of microfluidic channel

Valeria Maselli, Jason R. Grenier, Stephen Ho, and Peter R. Herman
Opt. Express 17(14) 11719-11729 (2009)

Enhanced strain and temperature sensing by reduced graphene oxide coated etched fiber Bragg gratings

Sridevi. S, K. S. Vasu, S. Asokan, and A. K. Sood
Opt. Lett. 41(11) 2604-2607 (2016)

Fiber optic hydrogen sensor based on an etched Bragg grating coated with palladium

L. Coelho, J. M. M. M. de Almeida, J. L. Santos, and D. Viegas
Appl. Opt. 54(35) 10342-10348 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.