OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 10 — May. 15, 2013
  • pp: 1636–1644

Tunable Microwave and Sub-Terahertz Generation Based on Frequency Quadrupling Using a Single Polarization Modulator

Weilin Liu, Muguang Wang, and Jianping Yao

Journal of Lightwave Technology, Vol. 31, Issue 10, pp. 1636-1644 (2013)


View Full Text Article

Acrobat PDF (1945 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Frequency quadrupling for tunable microwave and sub-terahertz generation using a single polarization modulator (PolM) in a Sagnac loop without using an optical filter or a wideband microwave phase shifter is proposed and experimentally demonstrated. In the proposed system, a linearly polarized continuous wave from a tunable laser source (TLS) is split into two orthogonally polarized optical waves by a polarization beam splitter (PBS) and sent to the Sagnac loop traveling along the clockwise and counter-clockwise directions. A PolM to which a reference microwave signal is applied is incorporated in the loop. The PolM is a traveling-wave modulator, due to the velocity mismatch only the clockwise light wave is effectively modulated by the reference microwave signal, and the counter-clockwise light wave is not modulated. This is the key point that ensures the cancelation of the optical carrier without the need of an optical filter. Along the clockwise direction, the joint operation of the PolM, a polarization controller (PC), and a polarizer corresponds to a Mach–Zehnder modulator (MZM) with the bias point controlled to suppress the odd-order sidebands. The optical carrier is then suppressed by the counter-clockwise light wave at the polarizer. As a result, only two ±2nd-order sidebands are generated, which are applied to a photodetector (PD) to generate a microwave signal with a frequency that is four times that of the reference microwave signal. A theoretical analysis is developed, which is validated by an experiment. A frequency-quadrupled electrical signal with a large tunable range from 2.04 to 100 GHz is generated. The performance of the proposed system in terms of stability and phase noise is also evaluated.

© 2013 IEEE

Citation
Weilin Liu, Muguang Wang, and Jianping Yao, "Tunable Microwave and Sub-Terahertz Generation Based on Frequency Quadrupling Using a Single Polarization Modulator," J. Lightwave Technol. 31, 1636-1644 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-10-1636

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited