Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 31,
  • Issue 11,
  • pp. 1694-1702
  • (2013)

Dispersion Properties of Three-Dimensional Plasma Photonic Crystals in Diamond Lattice Arrangement

Not Accessible

Your library or personal account may give you access

Abstract

Dispersion properties of two types of three-dimensional plasma photonic crystals are theoretically investigated by a modified plane wave expansion method, which is composed of isotropic dielectric and nomagnetized plasma. The eigenvalue equations of two types of structures depend on the diamond lattice realization (dielectric spheres inserted in plasma background or vice versa), are deduced respectively. The band structures can be obtained by solving the nonlinear eigenvalue equations. The influences of relative dielectric constant and plasma frequency with different filling factors on dispersive relation are demonstrated, respectively. The numerical results show that the band structures can be modulated by the parameters for the two types of plasma photonic crystals.

© 2013 IEEE

PDF Article
More Like This
Modulation of large absolute photonic bandgaps in two-dimensional plasma photonic crystal containing anisotropic material

Qian Li, Kang Xie, Dongsheng Yuan, Zhang Wei, Lei Hu, Qiuping Mao, Haiming Jiang, Zhijia Hu, and Erlei Wang
Appl. Opt. 55(30) 8541-8549 (2016)

Use of ultrafast-laser-driven microexplosion for fabricating three-dimensional void-based diamond-lattice photonic crystals in a solid polymer material

Guangyong Zhou, Michael James Ventura, Michael Ross Vanner, and Min Gu
Opt. Lett. 29(19) 2240-2242 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved