OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 31, Iss. 11 — Jun. 1, 2013
  • pp: 1703–1707

Preparation of High Purity Te-Rich Ge-Te-Se Fibers for 5–15 μm Infrared Range

Clément Conseil, Vladimir S. Shiryaev, Shuo Cui, Catherine Boussard-Pledel, Johann Troles, Alexander P. Velmuzhov, Alexander M. Potapov, Alexander I. Suchkov, Mikhail F. Churbanov, and Bruno Bureau

Journal of Lightwave Technology, Vol. 31, Issue 11, pp. 1703-1707 (2013)

View Full Text Article

Acrobat PDF (408 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Te rich glasses in the ternary Ge-Te-Se system are stable against crystallization and remain transparent enough for application in the far infrared beyond 15 <i>μ</i>m. Four protocoles of preparation of highly-purified Te-rich Ge-Te-Se glasses are developed and compared. These methods are based on different distillation procedures to remove water, oxides, hydrogen and carbon impurities from glasses. The final residual impurity content in glasses was determined by the IR spectroscopy and laser mass spectrometry. Then, unclad optical fibers were drawn from each synthetized glass. At room temperature, the minimum of attenuation is about 7 dB/m at 10.6 <i>μ</i>m whatever the purification procedure, showing that the residual optical losses are intrinsic to the chemical nature of the glasses. On the other hand, at 77 K, the optical losses are lowered to 1 dB/m confirming that losses are mainly due to the high charge carrier concentration inherent to the semi-conducting behavior of these glasses. Finally, this low level of losses is rather a promising news in view of application in space where optical filtering devices working beyond 15 <i>μ</i>m are needed.

© 2013 IEEE

Clément Conseil, Vladimir S. Shiryaev, Shuo Cui, Catherine Boussard-Pledel, Johann Troles, Alexander P. Velmuzhov, Alexander M. Potapov, Alexander I. Suchkov, Mikhail F. Churbanov, and Bruno Bureau, "Preparation of High Purity Te-Rich Ge-Te-Se Fibers for 5–15 μm Infrared Range," J. Lightwave Technol. 31, 1703-1707 (2013)

Sort:  Year  |  Journal  |  Reset


  1. A. Canciamilla, S. Grillanda, F. Morichetti, C. Ferrari, J. Hu, J. D. Musgraves, K. Richardson, A. Agarwal, L. C. Kimerling, A. Melloni, "Photo-induced trimming of coupled ring-resonator filters and delay lines in As2S3 chalcogenide glass," Opt. Lett. 36, 4002-4004 (2011).
  2. M. Hubert, G. Delaizir, J. Monnier, C. Godart, H.-L. Ma, X.-H. Zhang, L. Calvez, "An innovative approach to develop highly performant chalcogenide glasses and glass-ceramics transparent in the infrared range," Opt. Exp. 19, 23513-23522 (2011).
  3. B. J. Eggleton, B. Luther-Davies, K. Richardson, "Chalcogenide photonics," Nat. Photon. 5, 141-148 (2011).
  4. G. R. Elliott, D. W. Hewak, G. S. Murugan, J. S. Wilkinson, "Chalcogenide glass microspheres; their production, characterization and potential," Opt. Exp. 15, 17542-17553 (2007).
  5. J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, L. Brilland, "Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm," Opt. Exp. 18, 26647-26654 (2010).
  6. J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, I. D. Aggarwal, "Non-linear properties of chalcogenide glasses and fibers," J. Non-Crystalline Solids 354, 462-467 (2008).
  7. L. Calvez, H. L. Ma, J. Lucas, X. H. Zhang, "Glasses and glass-ceramics based on GeSe2-Sb2Se3 and halides for far infrared transmission," J. Non-Crystalline Solids 354, 1123-1127 (2008).
  8. L. Petit, N. Carlie, A. Humeau, G. Boudebs, H. Jain, A. C. Miller, K. Richardson, "Correlation between the nonlinear refractive index and structure of germanium-based chalcogenide glasses," Mater. Res. Bull. 42, 2107-2116 (2007).
  9. C. Conseil, Q. Coulombier, C. Boussard-Plédel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, J. Lucas, "Chalcogenide step index and microstructured single mode fibers," J. Non-Crystalline Solids 357, 2480-2483 (2011).
  10. J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, "Applications of chalcogenide glass optical fibers," Comptes Rendus Chimie 5, 873-883 (2002).
  11. V. S. Shiryaev, J. L. Adam, X. H. Zhang, C. Boussard-Plédel, J. Lucas, M. F. Churbanov, "Infrared fibers based on Te-As-Se glass system with low optical losses," J. Non-Crystalline Solids 336, 113-119 (2004).
  12. B. Bureau, S. Danto, H. L. Ma, C. Boussard-Plédel, X. H. Zhang, J. Lucas, "Tellurium based glasses: A ruthless glass to crystal competition," Solid State Sci. 10, 427-433 (2008).
  13. X. H. Zhang, H. L. Ma, C. Blanchetière, J. Lucas, "Low loss optical fibres of the tellurium halide-based glasses, the TeX glasses," J. Non-Crystalline Solids 161, 327-330 (1993).
  14. S. Maurugeon, B. Bureau, C. Boussard-Plédel, A. J. Faber, P. Lucas, X. H. Zhang, J. Lucas, "Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing," Opt. Mater. 33, 660-663 (2010).
  15. S. Maurugeon, C. Boussard-Pledel, J. Troles, A. J. Faber, P. Lucas, X. H. Zhang, J. Lucas, B. Bureau, "Telluride glass step index fiber for the far infrared," J. Lightw. Technol. 28, 3358-3363 (2010).
  16. C. Conseil, J. C. Bastien, C. Boussard-Plédel, X. H. Zhang, P. Lucas, S. Dai, J. Lucas, B. Bureau, "Te-based chalcohalide glasses for far-infrared optical fiber," Opt. Mater. Exp. 2, 1470-1477 (2012).
  17. F. Charpentier, B. Bureau, J. Troles, C. Boussard-Plédel, K. M.-L. Pierrès, F. Smektala, J.-L. Adam, "Infrared monitoring of underground CO2 storage using chalcogenide glass fibers," Opt. Mater. 31, 496-500 (2009).
  18. A. Léger, J. M. Mariotti, B. Mennesson, M. Ollivier, J. L. Puget, D. Rouan, J. Schneider, "Could we search for primitive life on extrasolar planets in the near future?," Icarus 123, 249-255 (1996).
  19. A. Léger, "Strategies for remote detection of life DARWIN-IRSI and TPF missions," Adv. Space Res. 25, 2209-2223 (2000).
  20. S. Danto, P. Houizot, C. Boussard-Pledel, X. H. Zhang, F. Smektala, J. Lucas, "A family of far-infrared-transmitting glasses in the Ga-Ge-Te system for space applications," Adv. Functional Mater. 16, 1847-1852 (2006).
  21. A. A. Wilhelm, C. Boussard-Plédel, Q. Coulombier, J. Lucas, B. Bureau, P. Lucas, "Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics," Adv. Mater. 19, 3796-3800 (2007).
  22. S. Maurugeon, B. Bureau, C. Boussard-Plédel, A. J. Faber, X. H. Zhang, W. Geliesen, J. Lucas, "Te-rich Ge-Te-Se glass for the CO2 infrared detection at 15 μm," J. Non-Crystalline Solids 355, 2074-2078 (2009).
  23. M. F. Churbanov, "High-purity chalcogenide glasses as materials for fiber optics," J. Non-Crystalline Solids 184, 25-29 (1995).
  24. V. S. Shiryaev, S. V. Smetanin, D. K. Ovchinnikov, M. F. Churbanov, E. B. Kryukova, V. G. Plotnichenko, "Effects of oxygen and carbon impurities on the optical transmission of As2Se3 glass," Inorganic Mater. 41, 308-314 (2005).
  25. M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, "Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics," J. Non-Crystalline Solids 357, 2352-2357 (2011).
  26. L. Petit, N. Carlie, H. Chen, S. Gaylord, J. Massera, G. Boudebs, J. Hu, A. Agarwal, L. Kimerling, K. Richardson, "Compositional dependence of the nonlinear refractive index of new germanium-based chalcogenide glasses," J. Solid State Chem. 182, 2756-2761 (2009).
  27. J. Nishii, S. Morimoto, I. Inagawa, R. Iizuka, T. Yamashita, T. Yamagishi, "Recent advances and trends in chalcogenide glass-fiber technology—A review," J. Non-Crystalline Solids 140, 199-208 (1992).
  28. M. Roze, L. Calvez, J. Rollin, P. Gallais, J. Lonnoy, S. Ollivier, M. Guilloux-Viry, X. H. Zhang, "Optical properties of free arsenic and broadband infrared chalcogenide glass," Appl. Phys. A Mater. Sci. Process. 98, 97-101 (2010).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited