OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 31, Iss. 19 — Oct. 1, 2013
  • pp: 3151–3157

Birefringence Measurements in Optical Waveguides

D. Jamon, F. Royer, F. Parsy, E. Ghibaudo, and J. E. Broquin

Journal of Lightwave Technology, Vol. 31, Issue 19, pp. 3151-3157 (2013)

View Full Text Article

Acrobat PDF (723 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


This paper deals with an experimental nondestructive technique for the measurement of modal birefringence of integrated optical waveguides. The method is based on a magneto-optical perturbation technique combined with a highly sensitive polarimeter. Magneto-optical modal conversion, through the Verdet constant of the waveguides, and its dependence on the perturbation length are discussed. In this paper, the practical application of this equipment is proposed for the measurement of modal birefringence in totally or partially buried ion exchanged waveguides.

© 2013 IEEE

D. Jamon, F. Royer, F. Parsy, E. Ghibaudo, and J. E. Broquin, "Birefringence Measurements in Optical Waveguides," J. Lightwave Technol. 31, 3151-3157 (2013)

Sort:  Year  |  Journal  |  Reset


  1. D. F. Geraghty, D. Provenzano, M. Morrell, S. Honkanen, A. Yariv, N. Peyghambarian, "Ion-exchanged waveguide add drop filter," Electron. Lett. 37, 829-831 (2001).
  2. J.-E. Broquin, "Ion-exchanged integrated devices," Proc. SPIE 4277, Integr. Opt. Devices V (2001, vol. 105).
  3. H. Takahashi, Y. Hibino, I. Nishi, "Polarization-insensitive arrayed-waveguide grating wavelength multiplexer on silicon," Opt. Lett. 17, 499-501 (1992).
  4. I. P. Kaminow, V. Ramaswamy, R. V. Schmidt, E. H. Turner, "Lithium niobate ridge waveguide modulator," Appl. Phys. Lett. 24, 622-624 (1974).
  5. D. Ahn, C.-Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, "High performance, waveguide integrated Ge photodetectors," Opt. Exp. 15, 3916-3921 (2007).
  6. S. Honkanen, A. Tervonen, M. McCourt, "Control of birefringence in ion-exchanged glass waveguides," Appl. Opt. 26, 4710-4711 (1987).
  7. S. Yliniemi, B. R. West, T. Aalto, P. Madasamy, N. Peyghambarian, S. Honkanen, Integrated Optics and Photonic Integrated Circuits (SPIE, 2004 ) pp. 558-564.
  8. H. Amata, F. Royer, F. Choueikani, D. Jamon, F. Parsy, J.-E. Broquin, S. Neveu, J. J. Rousseau, "Hybrid magneto-optical mode converter made with a magnetic nanoparticles-doped SiO2/ZrO2 layer coated on an ion-exchanged glass waveguide," Appl. Phys. Lett. 89, 251108 (2011).
  9. S. Yliniemi, B. R. West, S. Honkanen, "Ion-exchanged glass waveguides with low birefringence for a broad range of waveguide widths," Appl. Opt. 44, 3358-3363 (2005).
  10. Z. M. Qi, K. Itoh, M. Murabayashi, "Measurement of the modal birefringence of single-mode K1 ion-exchanged planar waveguides with polarimetric interferometry," Appl. Opt. 39, 5750-5754 (2000).
  11. R. M. Craig, S.L. Gilbert, P. D. Hale, "High-resolution, nonmechanical approach to polarization-dependent transmission measurements," J. Lightw. Technol. 16, 1285-1294 (1998).
  12. R. M. A. Azzam and N. M. Bashara, North-Holland, Amsterdam, pp. 248–251, 1989. .
  13. S. Huard, Polarisation de la lumièreLumière (Masson, 1994) pp. 23-30.
  14. R. Stolte, R. Ulrich, " Electro-optic and thermo-optic measurements of birefringence of LiNbO3 waveguides," Opt. Lett. 20, 142-144 (1995).
  15. D. Johlen, G. Stolze, H. Renner, E. Brinkmeyer, "Measurement of the birefringence of UV-written channel silica waveguides by magnetooptic polarization-mode coupling," J. Lightw. Technol. 18, 185-192 (2000 ).
  16. M. Lohmeyer, N. Bahlmann, O. Zhuromsky, H. Dötsch, P. Hertel, " Phase-matched rectangular magnetooptic waveguides for applications in nonreciprocal integrated optics devices: Numerical assessment," Opt. Commun. 158, 189-200 (1998).
  17. S. Huard, Polarisation de la lumièreLumière.Mason (Masson, 1994 ) pp. 100-102.
  18. R. C. Jones, "A new calculus for the treatment of optical systems," J. Opt. Soc. Amer. 31, 488 -493 (1941).
  19. D. C. Meeker. (2006). Finite element method magnetics (FEMM). [Online]. Available: http://femm.foster-miller.net.
  20. T. Izawa, H. Nakagome, "Optical waveguide formed by electrically induced migration of ions in glass plates," Appl. Phys. Lett. 21, 584-586 (1972).
  21. L. Onestas, D. Bucci, E. Ghibaudo, J.-E. Broquin, "Vertically integrated broadband duplexer for erbium-doped waveguide amplifiers made by ion exchange on glass," IEEE Photon. Technol. Lett. 23, 648-650 (2011).
  22. A. Schimpf, D. Bucci, M. Nannini, A. Magnaldo, L. Couston, J.-E. Broquin, "Photothermal microfluidic sensor based on an integrated Young interferometer made by ion exchange in glass," Sens. Actuators B 163, 29-37 (2012).
  23. J. Grelin, E. Ghibaudo, J.-E. Broquin, "Study of deeply buried waveguides: A way towards 3-D integration," Mater. Sci. Eng. B 149, 185-189 (2008).
  24. O. Bertoldi, J.-E. Broquin, G. Vitrant, V. Collomb, M. Trouillon, V. Minier, "Use of selectively buried ion exchange waveguides for the realisation of Bragg grating filters," Proc. SPIE 5451, 182-190 (2004).
  25. D. Marquardt, "An Algorithm for least-squares estimation of nonlinear parameters ," SIAM J. Appl. Math. 11, 431 -441 (1963).
  26. F. A. Modine, G. E. Jellison, Jr.G. R. Gruzalski, "Errors in ellipsometry measurements made with a photoelastic modulator," J. Opt. Soc. Amer. 73, 892-900 (1983).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited