Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 31,
  • Issue 2,
  • pp. 343-348
  • (2013)

Photonic Crystal Fiber With an Ultrahigh Birefringence and Flattened Dispersion by Using Genetic Algorithms

Not Accessible

Your library or personal account may give you access

Abstract

We developed a high-throughput technique to design photonic crystal fiber (PCF) structures with desired properties and functionalities. By using a genetic algorithm, a high birefringence and an ultra-flattened chromatic dispersion over a large wavelength range are achieved. It is shown that a low confinement loss can be obtained while the birefringence remains the same. The numerical results show that the presented PCF structure can be successfully employed as maintaining polarization devices working in a large zero- chromatic dispersion region.

© 2012 IEEE

PDF Article
More Like This
Design and numerical analysis of a THz square porous-core photonic crystal fiber for low flattened dispersion, ultrahigh birefringence

Jianfeng Luo, Fengjun Tian, Hongkun Qu, Li Li, Jianzhong Zhang, Xinhua Yang, and Libo Yuan
Appl. Opt. 56(24) 6993-7001 (2017)

Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion

So Eun Kim, Bok Hyeon Kim, Chung Ghiu Lee, Sejin Lee, Kyunghwan Oh, and Chul-Sik Kee
Opt. Express 20(2) 1385-1391 (2012)

Photonic crystal fiber design by means of a genetic algorithm

Emmanuel Kerrinckx, Laurent Bigot, Marc Douay, and Yves Quiquempois
Opt. Express 12(9) 1990-1995 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.