OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 4 — Feb. 15, 2013
  • pp: 571–586

Microwave Photonic Signal Processing

José Capmany, José Mora, Ivana Gasulla, Juan Sancho, Juan Lloret, and Salvador Sales

Journal of Lightwave Technology, Vol. 31, Issue 4, pp. 571-586 (2013)


View Full Text Article

Acrobat PDF (2244 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

This paper reviews the recent advances in the field of radio frequency signal processing using photonic devices and subsystems or microwave photonic (MWP) signal processing. We focus our attention on the results reported during the last six years, as previous work has been adequately addressed in previous review papers. After a brief introduction to the basic concepts involved in MWP signal processing, we focus our attention on the most significant advances reported by different research groups in overcoming their main limitation factors. Recent advances in the emergent topic of integrated MWP signal processors are also covered and the novel approaches toward the evaluation of the main figures of merit are discussed. New proposed applications and future directions of work are also considered.

© 2012 IEEE

Citation
José Capmany, José Mora, Ivana Gasulla, Juan Sancho, Juan Lloret, and Salvador Sales, "Microwave Photonic Signal Processing," J. Lightwave Technol. 31, 571-586 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-4-571


Sort:  Year  |  Journal  |  Reset

References

  1. J. Capmany, D. Novak, "Microwave photonics combines two worlds," Nature Photon. 1, 319-330 (2007).
  2. J. P. Yao, "Microwave photonics," J. Lightw. Technol. 27, 314-335 (2009).
  3. A. J. Seeds, K. J. Williams, "Microwave photonics," J. Lightw. Technol. 24, 4628-4641 (2006).
  4. J. Capmany, B. Ortega, D. Pastor, S. Sales, "Discrete-time optical processing of microwave signals," J. Lightw. Technol. 23, 702-723 (2005).
  5. J. Capmany, B. Ortega, D. Pastor, "A tutorial on microwave photonic filters," J. Lightw. Technol. 24, 201-229 (2006).
  6. R. A. Minasian, "Photonic signal processing of microwave signals," IEEE Trans. Microw. Theory Tech. 54, 832-846 (2006).
  7. C. K. Madsen, J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley-Interscience, 1999).
  8. R. W. Boyd, D. J. Gauthier, "Controlling the velocity of light pulses," Science 326, 1074-1077 (2009).
  9. A. Zadok, A. Eyal, M. Tur, "Stimulated Brillouin scattering slow light in optical fibers," Appl. Opt. 50, E38-E49 (2011).
  10. A. Loayssa, F. J. Lahoz, "Broad-band RF photonic phase-shifter based on stimulated Brillouin scattering and single-sideband modulation," IEEE Photon. Technol. Lett. 18, 208-210 (2006).
  11. A. Loayssa, J. Capmany, M. Sagues, J. Mora, "Demonstration of incoherent microwave photonic filters with all-optical complex coefficients," IEEE Photon. Technol. Lett. 18, 1744-1746 (2006).
  12. M. Sagues, A. Loayssa, J. Capmany, "Multitap complex-coefficient incoherent microwave photonic filters based on stimulated Brillouin scattering," IEEE Photon. Technol. Lett. 19, 1194-1197 (2007).
  13. P. A. Morton, J. B. Khurgin, "Microwave photonic delay line with separate tuning of the optical carrier," IEEE Photon. Technol. Lett. 21, 1686-1688 (2009).
  14. J. Sancho, S. Chin, M. Sagues, A. Loayssa, J. Lloret, I. Gasulla, S. Sales, L. Thévenaz, J. Capmany, "Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers," IEEE Photon. Technol. Lett. 22, 1753-1755 (2010).
  15. S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, D. Dolfi, "Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers," Opt. Exp. 18, 22599-22613 (2010).
  16. K. Y. Song, W. Zou, Z. He, K. Hotate, "All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber," Opt. Lett. 33, 926-928 (2008).
  17. J. Sancho, N. Primerov, S. Chin, Y. Antman, A. Zadok, S. Sales, L. Thévenaz, "Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers," Opt. Exp. 20, 6157-6162 (2012).
  18. M. Sagues, R. G. Olcina, A. Loayssa, S. Sales, J. Capmany, "Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering," Opt. Exp. 16, 295-303 (2008).
  19. Y. Dai, J. P. Yao, "Nonuniformly-spaced photonic microwave delay-line filter," Opt. Exp. 16, 4713-4718 (2008).
  20. S. Sales, W. Xue, J. Mork, I. Gasulla, "Slow and fast light effects and their applications to microwave photonics using semiconductor optical amplifiers," IEEE Trans. Microw. Theory and Tech. 58, 3022-3038 (2010).
  21. F. Ohman, K. Yvind, J. Mork, "Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics," IEEE Photon. Technol. Lett. 19, 1145-1147 (2007).
  22. W. Xue, Y. Chen, F. Öhman, S. Sales, J. Mørk, "Enhancing light slow-down in semiconductor optical amplifiers by optical filtering," Opt. Lett. 33, 1084-1086 (2008).
  23. W. Xue, S. Sales, J. Capmany, J. Mørk, "Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers," Opt. Lett. 34, 929-931 (2009).
  24. W. Xue, S. Sales, J. Capmany, J. Mørk, "Wideband 360° microwave photonic phase shifter based on slow light in semiconductor optical amplifiers," Opt. Exp. 18, 6156-6163 (2010).
  25. J. Sancho, J. Lloret, I. Gasulla, S. Sales, J. Capmany, "Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier," Opt. Exp. 19, 17421-17426 (2011).
  26. W. Xue, S. Sales, J. Mork, J. Capmany, "Widely tunable microwave photonic notch filter based on slow and fast light effects," IEEE Photon. Technol. Lett. 21, 167-169 (2009).
  27. Y. Yan, J. P. Yao, "A tunable photonic microwave filter with a complex coefficient using an optical RF phase shifter," IEEE Photon. Technol. Lett. 19, 1472-1474 (2007).
  28. X. Yi, T. X. H. Huang, R. A. Minasian, "Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients," IEEE Trans. Microw. Theory Tech. (Special Issue Microw. Photon.) 58, 3088-3093 (2010).
  29. M. H. Song, V. Torres-Company, R. Wu, E. Hamidi, A. M. Weiner, "Programmable multi-tap microwave photonic phase filtering via optical frequency comb shaping," Proc. Int. Topical Meet. Microw. Photon. Conf. (2011) pp. 37-40.
  30. F. Zeng, J. Wang, J. P. Yao, "All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings," Opt. Lett. 30, 2203-2205 (2005).
  31. J. Wang, F. Zeng, J. P. Yao, "All-optical microwave bandpass filter with negative coefficients based on PM-IM conversion," IEEE Photon. Technol. Lett. 17, 2176-2178 (2005).
  32. J. Mora, J. Capmany, A. Loayssa, D. Pastor, "Novel technique for implementing incoherent microwave photonic filters with negative coefficients using phase modulation and single sideband selection," IEEE Photon. Technol. Lett. 18, 1943-1945 (2006).
  33. J. P. Yao, Q. Wang, "Photonic microwave bandpass filter with negative coefficients using a polarization modulator," IEEE Photon. Technol. Lett. 19, 644-646 (2007).
  34. Q. Wang, J. P. Yao, "Multitap photonic microwave filters with arbitrary positive and negative coefficients using a polarization modulator and an optical polarizer," IEEE Photon. Technol. Lett. 20, 78-80 (2008).
  35. S.-C. Chan, Q. Liu, Z. Wang, K. S. Chiang, "Tunable negative-tap photonic microwave filter based on a cladding-mode coupler and an optically injected laser of large detuning," Opt. Exp. 19, 12045-12052 (2011).
  36. T. Chen, X. Yi, T. X. H. Huang, R. A. Minasian, "Multiple-bipolar-tap tunable spectrum sliced microwave photonic filter," Opt. Lett. 35, 3934-3936 (2010).
  37. T. X. H. Huang, X. Yi, R. A. Minasian, "Microwave photonic filters with programmable bipolar coefficients based on π-phase inversion of DSB sidebands," Electron. Lett. 46, 1609-1610 (2010).
  38. M. D. Manzanedo, J. Mora, J. Capmany, "Continuously tunable microwave photonic filter with negative coefficients using cross-phase modulation in an SOA-MZ interferometer," IEEE Photon. Technol. Lett. 20, 526-528 (2008).
  39. J. Mora, B. Ortega, A. Díez, J. L. Cruz, M. V. Andrés, J. Capmany, D. Pastor, "Photonic microwave tunable single bandpass filter based on a Mach-Zehnder interferometer," J. Lightw. Technol. 24, 2500-2509 (2006).
  40. J. Mora, L. R. Chen, J. Capmany, "Single bandpass microwave photonic filter with tuning and reconfiguration capabilities," J. Lightw. Technol. 26, 2663-2670 (2008).
  41. T. X. H. Huang, X. Yi, R. A. Minasian, "Single passband microwave photonic filter using continuous-time impulse response," Opt. Exp. 19, 6231-6242 (2011).
  42. J. Capmany, "On the cascade of incoherent discrete-time microwave photonic filters," J. Lightw. Technol. 24, 2564-2578 (2006).
  43. J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, B. Vidal, "Single bandpass photonic microwave filter based on a notch ring resonator," IEEE Photon. Technol. Lett. 22, 1276-1278 (2010).
  44. J. Palací, P. Pérez-Millán, G. E. Villanueva, J. L. Cruz, M. V. Andrés, J. Martí, B. Vidal, "Tunable photonic microwave filter with single bandpass based on a phase-shifted fiber Bragg grating," IEEE Photon. Technol. Lett. 22, 1467-1469 (2010).
  45. W. Zhang, R. A. Minasian, "Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering," IEEE Photon. Technol. Lett. 23, 1775-1777 (2011).
  46. E. H. W. Chan, R. A. Minasian, "Widely tunable, high-FSR, coherence-free microwave photonic notch filter," J. Lightw. Technol. 26, 922-927 (2008).
  47. E. H. W. Chan, "Suppression of coherent interference effect in an optical delay line signal processor using a single tone phase modulation technique," IEEE Photon. Technol. Lett. 21, 215-217 (2009).
  48. E. H. W. Chan, R. A. Minasian, "Novel coherence-free RF/microwave photonic bandpass filter," IEEE Photon. Technol. Lett. 21, 230-232 (2009).
  49. E. H. W. Chan, R. A. Minasian, "Coherence-free high-resolution RF/microwave photonic bandpass filter with high skirt selectivity and high stopband attenuation," J. Lightw. Technol. 28, 1646-1651 (2010).
  50. E. H. W. Chan, "Cascaded multiple infinite impulse response optical delay line signal processor without coherent interference," J. Lightw. Technol. 29, 1401-1406 (2011).
  51. E. H. W. Chan, R. A. Minasian, "High-resolution tunable RF/microwave photonic notch filter with low-noise performance," J. Lightw. Technol. 29, 3304-3309 (2011).
  52. J. Capmany, J. Mora, B. Ortega, D. Pastor, "High Q microwave photonic filter using a tuned modulator," Opt. Lett. 2291-2301 (2005).
  53. B. Ortega, J. Mora, J. Capmany, D. Pastor, R. Garcia-Olcina, "Highly selective microwave photonic filters based on an active optical recirculating cavity and tuned modulator hybrid structure," Electron. Lett. 41, 1133-1135 (2005).
  54. J. Mora, B. Ortega, J. Capmany, "Accurate control of active recirculating structures for microwave photonics signal filtering," J. Lightw. Technol. 26, 1626-1631 (2008).
  55. J. Capmany, J. Mora, B. Ortega, D. Pastor, "High-quality low-cost online-reconfigurable microwave photonic transversal filter with positive and negative coefficients," IEEE Photon. Technol. Lett. 17, 2730-2732 (2005).
  56. E. Hamidi, D. E. Leaird, A. M. Weiner, "Tunable programmable microwave photonic filters based on an optical frequency comb," IEEE Trans. Microw. Theory Tech. 58, 3269-3278 (2010).
  57. M. Song, C. M. Long, E. Hamidi, R. Wu, V. Supradeepa, D. Seo, D. E. Leaird, A. M. Weiner, "Flat-top microwave photonic filter based on optical frequency comb shaping," presented at the Conf. Lasers Electro-Opt. BaltimoreMD (2011) Paper CThI5.
  58. M. H. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, A. M. Weiner, "Reconfigurable and tunable flat-top microwave photonic filters utilizing optical frequency comb," IEEE Photon. Technol. Lett. 23, 1618-1620 (2011).
  59. V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, A. M. Weiner, "Comb-based radiofrequency photonic filters with rapid tunability and high selectivity," Nature Photon. 6, 186-194 (2012).
  60. S. Xiao, A. M. Weiner, "Programmable photonic microwave filters with arbitrary ultra wideband phase response," IEEE Trans. Microw. Theory Tech. 54, 4002-4008 (2006).
  61. E. J. Norberg, R. S. Guzzon, S. C. Nicholes, J. S. Parker, L. A. Coldren, "Programmable photonic lattice filters in InGaAsP-InP," Photon. Technol. Lett. 22, 109-111 (2010).
  62. R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Johansson, L. A. Coldren, "Monolithically integrated programmable photonic microwave filter with tunable inter-ring coupling," Proc. IEEE Top. Meeting Microw. Photon. (2010) pp. 23-26.
  63. E. J. Norberg, R. S. Guzzon, J. S. Parker, L. A. Johansson, L. A. Coldren, "A monolithic programmable optical filter for RF-signal processing," Proc. IEEE Top. Meeting Microw. Photon. (2010) pp. 365-368.
  64. E. J. Norberg, R. S. Guzzon, J. S. Parker, L. A. Coldren, "Programmable photonic filters from monolithically cascaded filter stages," presented at the Proc. Integr. Photon. Res., Silicon Nanophoton. MontereyCA (2010) Paper ITuC3.
  65. E. J. Norberg, R. S. Guzzon, J. S. Parker, L. A. Johansson, L. A. Coldren, "Programmable photonic microwave filters monolithically integrated in InP/InGaAsP," J. Lightw. Technol. 29, 1611-1619 (2011).
  66. R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Johansson, L. A. Coldren, "Integrated InP-InGaAsP tunable coupled ring optical bandpass filters with zero insertion loss," Opt. Exp. 19, 7816-7826 (2011).
  67. H.-W. Chen, A. W. Fang, J. Bovington, J. Peters, J. Bowers, "Hybridsilicon tunable filter based on a Mach-Zehnder interferometer and ring resonantor," Proc. Int. Top. Meeting Microw. Photon. (2009) pp. 1-4.
  68. H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, J. E. Bowers, "Integrated microwave photonic filter on a hybrid silicon platform," IEEE Trans. Microw. Theory Tech. 58, 3213-3219 (2010).
  69. P. Dong, N. N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, M. Asghari, "GHz-bandwidth optical filters based on high-order silicon ring resonators," Opt. Exp. 18, 23784-23789 (2010).
  70. N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, M. Asghari, "Thermally-efficient reconfigurable narrowband RF-photonic filter," Opt. Exp. 18, 24648-24653 (2010).
  71. M. Rasras, K. Tu, D. Gill, Y. Chen, A. White, S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, L. Kimerling, "Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators," J. Lightw. Technol. 27, 2105-2110 (2009).
  72. J. Lloret, J. Sancho, M. Pu, I. Gasulla, K. Yvind, S. Sales, J. Capmany, "Tunable complex-valued multi-tap microwave photonic filter based on single silicon-on-insulator microring resonator," Opt. Exp. 19, 12402-12407 (2011).
  73. J. Lloret, G. Morthier, F. Ramos, S. Sales, D. Van Thourhout, T. Spuesens, N. Olivier, J.-M. Fédéli, J. Capmany, "Broadband microwave photonic fully tunable filter using a single heterogeneously integrated III-V/SOI-microdisk-based phase shifter," Opt. Exp. 20, 10796-10806 (2012).
  74. D. Marpaung, C. Roeloffzen, A. Leinse, M. Hoekman, "A photonic chip based frequency discriminator for a high performance microwave photonic link," Opt. Exp. 18, 27359-27370 (2010).
  75. M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, R. Heideman, "On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing," Opt. Exp. 19, 21475-21484 (2011).
  76. L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, C. Roeloffzen, "Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing," Opt. Exp. 19, 23162-23170 (2011).
  77. J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, A. De Rossi, "Integrable microwave filter based on a photonic crystal delay line," Nature Communications 3:1075 DOI:10.1038/ncomms2092 (2012).
  78. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, J. Capmany, "Integrated microwave photonics," Lasers Photon. Rev. .
  79. C. H. Cox, IIIAnalog Photonic Links: Theory and Practice (Cambridge Univ. Press, 2004).
  80. J. M. Wyrwas, M. C. Wu, "Dynamic range of frequency modulated direct-detection analog fiber optic links," J. Lightw. Technol. 27, 5552-5562 (2009).
  81. I. Gasulla, J. Capmany, "Analytical model and figures of merit for filtered microwave photonic links," Opt. Exp. 19, 19758-19774 (2011).
  82. M. Rius, J. Mora, M. Bolea, J. Capmany, "Harmonic distortion in microwave photonic filters," Opt. Exp. 20, 8871-8876 (2012).
  83. M. Bolea, J. Mora, B. Ortega, J. Capmany, "Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats," Opt. Exp. 17, 5023-5032 (2009).
  84. M. Bolea, J. Mora, B. Ortega, J. Capmany, "Photonic arbitrary waveform generation applicable to multiband UWB communications," Opt. Exp. 18, 26259-26267 (2010).
  85. M. Bolea, J. Mora, B. Ortega, J. Capmany, "Flexible monocycle UWB generation for reconfigurable access networks," IEEE Photon. Technol. Lett. 22, 878-880 (2010).
  86. H. Mu, J. P. Yao, "Polarity- and shape-switchable UWB pulse generation based on a photonic microwave delay-line filter with a negative tap coefficient," IEEE Photon. Technol. Lett. 21, 1253-1255 (2009).
  87. S. Pan, J. P. Yao, "Optical generation of polarity- and shape- switchable UWB pulses using a chirped intensity modulator and a first-order asymmetric Mach-Zehnder interferometer," Opt. Lett. 34, 1312-1314 (2009).
  88. S. Pan, J. P. Yao, "Switchable UWB pulses generation using a phase modulator and a reconfigurable asymmetric Mach-Zehnder interferometer," Opt. Lett. 34, 160-162 (2009).
  89. E. Hamidi, A. M. Weiner, "Phase-only matched filtering of ultrawideband arbitrary microwave waveforms via optical pulse shaping," J. Lightw. Technol. 26, 2355-2363 (2008).
  90. M. Kahn, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. Leaird, A. Weiner, M. Qi, "Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper," Nature Photon. 4, 117-122 (2009).
  91. M. Bolea, J. Mora, B. Ortega, J. Capmany, "Optical arbitrary waveform generator using incoherent microwave photonic filtering," IEEE Photon. Technol. Lett. 23, 618-620 (2011).
  92. J. P. Yao, "Photonic generation of microwave arbitrary waveforms," Opt. Commun. 284, 3723-3736 (2011).
  93. Z. Li, Y. Han, H. Chi, X. Zhang, J. P. Yao, "A continuously tunable microwave fractional Hilbert transformer based on a nonuniformly-spaced photonic microwave delay-line filter," J. Lightw. Technol. 30, 1948-1953 (2012).
  94. C. Wang, J. P. Yao, "Chirped microwave pulse compression using a photonic microwave filter with a nonlinear phase response," IEEE Trans. Microw. Theory Tech. 57, 496-504 (2009).
  95. Y. Dai, J. P. Yao, "Chirped microwave pulse generation using a photonic microwave delay-line filter with a quadratic phase response," IEEE Photon. Technol. Lett. 21, 569-571 (2009).
  96. M. Bolea, J. Mora, B. Ortega, J. Capmany, "Nonlinear dispersion-based incoherent photonic processing for microwave pulse generation with full reconfigurability," Opt. Exp. 20, 6278-6736 (2012).
  97. E. Hamidi, A. M. Weiner, "Post-compensation of ultra-wideband antenna dispersion using microwave photonic phase filters and its applications to UWB systems," IEEE Trans. Microw. Theory Tech. 57, 890-898 (2009).
  98. Y. Han, Z. Li, J. P. Yao, "A microwave bandpass differentiator implemented based on a nonuniformly-spaced photonic microwave delay-line filter," J. Lightw. Technol. 29, 3470-3475 (2011).
  99. Y. Dai, J. P. Yao, "Microwave correlator based on a nonuniformly spaced photonic microwave delay-line filter," IEEE Photon. Technol. Lett. 21, 969-971 (2009).
  100. Y. Park, M. H. Asghari, R. Helsten, J. Azaña, "Implementation of broadband microwave arbitrary-order time differential operators using a reconfigurable incoherent photonic processor," IEEE Photon. J. 2, 1040-1050 (2010).
  101. M. H. Asghari, Y. Park, J. Azaña, "Photonic temporal integration of broadband microwave waveforms over nanosecond time windows," presented at the Signal Process. Photon. Commun. Conf. TorontoONCanada Paper SPWD1.
  102. Y. Park, J. Azaña, "Optical signal processors based on a time-spectrum convolution," Opt. Lett. 35, 796-798 (2010).
  103. Y. Park, J. Azaña, "Ultrahigh dispersion of broadband microwave signals by incoherent photonic processing," Opt. Exp. 18, 14752-14761 (2010).
  104. F. Grassi, J. Mora, B. Ortega, J. Capmany, "Radio over fiber transceiver employing phase modulation of an optical broadband source," Opt. Exp. 18, 21750-21756 (2010).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited