OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 31, Iss. 5 — Mar. 1, 2013
  • pp: 707–714

Fast Measurements of Entangled Photons

S. X. Wang, P. Moraw, D. R. Reilly, J. B. Altepeter, and G. S. Kanter

Journal of Lightwave Technology, Vol. 31, Issue 5, pp. 707-714 (2013)

View Full Text Article

Acrobat PDF (1374 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We report on a system for the generation and measurement of polarization entangled photons. High speed quantum state tomographies with a raw fidelity of > 91% with respect to an ideal entangled state are recorded in < 2 seconds, with longer-term accidental-count subtracted fidelities exceeding 99%. Two-photon interference measurements are recorded using an automated alignment and measurement procedure with the signal distributed over 20 km of fiber. These high speed measurement methods are useful for high rate monitoring of entangled states.

© 2012 IEEE

S. X. Wang, P. Moraw, D. R. Reilly, J. B. Altepeter, and G. S. Kanter, "Fast Measurements of Entangled Photons," J. Lightwave Technol. 31, 707-714 (2013)

Sort:  Year  |  Journal  |  Reset


  1. H. C. Lim, A. Yoshizawa, H. Tsuchida, K. Kikuchi, "Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short PPLN waveguide," Opt. Exp. 16, 12460-12468 (2008).
  2. K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, P. Kumar, "Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber," Opt. Lett. 31, 1905-1907 (2006).
  3. M. Brodsky, E. C. George, C. Antonelli, M. Shtiaf, "Loss of polarization entanglement in a fiber-optic system with polarization mode dispersion in one optical path," Opt. Lett. 36, 43-45 (2011).
  4. C. Antonelli, M. Shtiaf, M. Brodsky, "Sudden death of entanglement induced by polarization mode dispersion," Phys. Rev. Lett. 106, 080404 (2011).
  5. G. B. Xavier, J. P. Von der Weid, "Limitations for transmission of photonic qubits in optical fibers carrying telecom traffic," Electron. Lett. 46, 1071-1072 (2010).
  6. P. Hariharan, B. C. Sanders, "Quantum phenomena in optical interferometry," Prog. Opt. 36, 49-128 (1996).
  7. J. B. Altepter, E. R. Jeffrey, P. G. Kwiat, "Photonic state tomography," Advances in Atomic, Molecular, and Optical Physics 52, 105-159 (2005).
  8. J. Fan, M. D. Eisaman, A. Migdall, "Quantum state tomography of a fiber-based source of polarization-entangled photon pairs," Opt. Exp. 15, 18339-18344 (2007).
  9. J. B. Altepeter, N. N. Oza, M. Medi?, E. R. Jeffrey, P. Kumar, "Entangled photon polarimetry," Opt. Exp. 19, 26011-26016 (2011).
  10. S. X. Wang, G. S. Kanter, "Robust multiwavelength all-fiber source of polarization-entangled photons with built-in analyzer alignment signal," IEEE J. Sel. Topics Quantum Electron. 15, 1733-1740 (2009).
  11. S. X. Wang, P. Moraw, C. Chan, G. S. Kanter, "Polarization entangled photon source with automated alignment and measurement systems," Proc. Updating Quantum Cryptography and Communications Conference, (UQCC) (2010).
  12. G. S. Kanter, S. X. Wang, Y.-P. Huang, P. Kumar, "Engineering fiber-nonlinearity based entangled photon sources for quantum key distribution applications," Proc. OFC (2011).
  13. G. B. Xavier, G. V. de Faria, G. P. Temporao, J. P. von der Weid, "Full polarization control for fiber optical quantum communication systems using polarization encoding," Opt. Exp. 16, 1867-1873 (2008).
  14. H. Jiang, Y. K. Zou, Q. Chen, K. K. Li, R. Zhang, Y. Wang, H. Ming, Z. Zheng, "Transparent electro-optic ceramics and devices," Proc. SPIE (2005) pp. 380-394.
  15. M. Shtaif, C. Antonelli, M. Brodsky, "Nonlocal compensation of polarization mode dispersion in the transmission of polarization entangled photons," Opt. Exp. 19, 1728-1733 (2011).
  16. H. de Riedmatten, I. Marcikic, J. A. W. Van Houwelingen, W. Tittel, H. Zbinden, N. Gisin, "Long-distance entanglement swapping with photons from separated sources," Phys. Rev. A 72, 050302 (2005).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited