OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 31, Iss. 8 — Apr. 15, 2013
  • pp: 1170–1177

Design of an Electro-Optic Modulator Based on a Silicon-Plasmonic Hybrid Phase Shifter

Mu Xu, Fei Li, Tao Wang, Jiayang Wu, Liyang Lu, Linjie Zhou, and Yikai Su

Journal of Lightwave Technology, Vol. 31, Issue 8, pp. 1170-1177 (2013)


View Full Text Article

Acrobat PDF (1241 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We propose a silicon-compatible plasmonic electro-optic modulator employing a silicon racetrack ring resonator coupled to a bus waveguide. A silicon-plasmonic hybrid phase shifter clad with electro-optic polymer is introduced to achieve high-speed performance and low energy consumption. Simulations show that the proposed modulator can achieve an extinction ratio of more than 15 dB at 1550-nm wavelength under a 1.2-V bias voltage. The misalignment tolerance and fabrication feasibility of the modulator are also discussed.

© 2013 IEEE

Citation
Mu Xu, Fei Li, Tao Wang, Jiayang Wu, Liyang Lu, Linjie Zhou, and Yikai Su, "Design of an Electro-Optic Modulator Based on a Silicon-Plasmonic Hybrid Phase Shifter," J. Lightwave Technol. 31, 1170-1177 (2013)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-31-8-1170


Sort:  Year  |  Journal  |  Reset

References

  1. F. Y. Gardes, D. J. Thomason, N. G. Emerson, G. T. Reed, "40 Gb/s silicon photonics modulator for TE and TM polarisations," Opt. Exp. 19, 11804-11814 (2011).
  2. G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, "Silicon optical modulators," Nature Photon. 4, 518-526 (2010).
  3. L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, J. Leuthold, "42.7 Gbit/s electro-optic modulator in silicon technology," Opt. Exp. 19, 11841-11851 (2011).
  4. R. Ding, T. B. Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. K.-Y. Jen, M. Hochberg, "Demonstration of a low VπL modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides," Opt. Exp. 18, 15618-15623 (2010).
  5. Y. Tang, H.-W. Chen, S. Jain, J. D. Peters, U. Westergren, J. E. Bowers, "50 Gb/s hybrid silicon traveling-wave electroabsorption modulator," Opt. Exp. 19, 5811-5816 (2011).
  6. T. B. Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. Dalton, A. K.-Y. Jen, M. Hochberg, A. Scherer, "Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V," Appl. Phys. Lett. 92, (2008).
  7. J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, R. Min, "Low-voltage, high-extinction-ratio, Mach-Zehnder silicon optical modulator for CMOS-compatible integration," Opt. Exp. 20, 3209-3218 (2012).
  8. Q. Xu, V. R. Almeida, M. Lipson, "Micrometer-scale all-optical wavelength converter on silicon," Opt. Lett. 30, 2733-2735 (2005).
  9. S. I. Inoue, S. Yokoyama, "Numerical simulation of ultra-compact electro-optic modulator based on nanoscale plasmon metal gap waveguides," Electron. Lett. 45, 1087-1089 (2009).
  10. W. Cai, J. S. White, M. L. Brongersma, "Compact, high-speed and power-efficient electrooptic plasmonic modulators," Nano Lett. 9, 4403-4411 (2009).
  11. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, (2006).
  12. S. Zhu, G. Q. Lo, D. L. Kwong, "Electro-absorption modulation in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides," Appl. Phys. Lett. 99, (2011).
  13. A. Melikyan, N. Lindenmann, S. Walheim, P. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, T. Schimmel, C. Koos, "Surface plasmon polariton absorption modulator," Opt. Exp. 19, 8855-8869 (2011).
  14. V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, X. Zhang, "Ultra-compact silicon nanophotonic modulator with broadband response," Nanophotonics 1, 17-22 (2012).
  15. J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, H. A. Atwater, "Silicon-based plasmonics for on-chip photonics," IEEE J. Sel. Topics Quantum Electron. 16, 295-306 (2010).
  16. S. Zhu, G. Q. Lo, D. L. Kwong, "Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators," Opt. Exp. 18, 27802-27819 (2010).
  17. X. Sun, L. Zhou, X. Li, Z. Hong, J. Chen, "Design and analysis of a phase modulator based on a metal-polymer-silicon hybrid plasmonic waveguide," Appl. Opt. 50, 3428-3434 (2011).
  18. B. Bortnik, Y.-C. Hung, H. Tazawa, B. J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, H. R. Fetterman, "Electrooptic polymer ring resonator modulation up to 165 GHz," IEEE J. Sel. Topics Quantum Electron. 13, 104-110 (2007).
  19. J. Luo, X.-H. Zhou, A. K.-Y. Jen, "Rational molecular design and supramolecular assembly of highly efficient organic electro-optic materials," J. Mater. Chem. 19, 7410-7424 (2009).
  20. H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K.-Y. Jen, L. R. Dalton, A. Chen, "All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber," IEEE Sensors J. 7, 515-524 (2007).
  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985) pp. 558-569.
  22. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985) pp. 753-763.
  23. P. B. Johnson, R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
  24. Q. Li, M. Qiu, "Structurally-tolerant vertical directional coupling between metal-insulator-metal plasmonic waveguide and silicon dielectric waveguide," Opt. Exp. 18, 15531-15543 (2010).
  25. Q. Li, Y. Song, G. Zhou, Y. Su, M. Qiu, "Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, low insertion loss," Opt. Lett. 35, 3153-3155 (2010).
  26. C. Delacour, S. Blaize, P. Grosse, J. M. Fedeli, A. Bruyant, R. S. Montiel, G. Lerondel, A. Chelnokov, "Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: Toward metal-oxide-silicon nanophotonics," Nano Lett. 10, 2922-2926 (2010).
  27. A. Yariv, P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford Univ. Press, 2006).
  28. H. Tazawa, W. H. Steier, "Analysis of ring resonator-based traveling-wave modulators," IEEE Photon. Technol. Lett. 18, 211-213 (2006).
  29. P. Dong, S. F. Preble, M. Lipson, "All-optical compact silicon comb switch," Opt. Exp. 15, 9600-9605 (2007).
  30. R. Ding, T. B. Jones, W.-J. Kim, A. Spott, M. Fournier, J.-M. Fedeli, S. Huang, J. Luo, A. K.-Y. Jen, L. Dalton, M. Hochberg, "Sub-volt silicon-organic electro-optic modulator with 500 MHz bandwidth," J. Lightw. Technol. 29, 1112-1117 (2011).
  31. M. Gould, T. B. Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J.-M. Fedeli, M. Fournier, M. Hochberg, "Silicon-polymer hybrid slot waveguide ring-resonator modulator," Opt. Exp. 19, 3952-3961 (2011).
  32. J. Tian, S. Yu, W. Yan, M. Qiu, "Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface," Appl. Phys. Lett. 95, (2009).
  33. S. Zhu, T. Liow, G. Lo, D. Kwong, "Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration," Opt. Exp. 19, 8888-8902 (2011).
  34. T. Wang, M. Xu, F. Li, J. Wu, L. Zhou, Y. Su, "Design of high-modulation-depth, low-energy silicon modulator based on coupling tuning in a resonance-split microring," J. Opt. Soc. Amer. B 29, 3047-3055 (2012).
  35. B. Guha, B. B. C. Kyotoku, M. Lipson, "CMOS-compatible athermal silicon microring resonators," Opt. Exp. 18, 3487-3493 (2010).
  36. M. Hochberg, T. B. Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, A. Scherer, "Towards a millivolt optical modulator with nano-slot waveguides," Opt. Exp. 15, 8401-8410 (2007).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited