Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 32,
  • Issue 21,
  • pp. 3631-3636
  • (2014)

Modeling of Au-Nanowire Waveguide for Plasmonic Sensing in Liquids

Not Accessible

Your library or personal account may give you access

Abstract

We theoretically demonstrate a plasmonic nanosensor, using Au-nanowire waveguide to measure the refractive-index changes in aqueous solutions. Based on finite element method simulations, waveguiding properties of Au nanowires for plasmonic sensing in liquids are investigated, with Au nanowire diameter down to 10 nm. A plasmonic nanowire Mach–Zehnder interferometer is proposed to measure the phase shift introduced by the index changes of surroundings. We find that, for a typical Au nanowire with 100-nm diameter, the calculated sensitivity is as high as 5.5π/(μm·RIU), and the sensitivity can be increased by reducing the nanowire diameter. Besides, for reference, we have also investigated Au nanowire plasmonic sensing in other liquids including ethylene glycol and index-matching oil. The nanowire plasmonic sensing scheme proposed here represents a high-sensitivity nanosensor with ultra-small footprint, and may open new opportunities for miniaturized sensing platform based on highly confined 1-D waveguiding plasmons.

© 2014 IEEE

PDF Article
More Like This
Modeling of silica nanowires for optical sensing

Jingyi Lou, Limin Tong, and Zhizhen Ye
Opt. Express 13(6) 2135-2140 (2005)

Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates

Yipei Wang, Yaoguang Ma, Xin Guo, and Limin Tong
Opt. Express 20(17) 19006-19015 (2012)

High-sensitivity liquid refractive-index sensor based on a Mach-Zehnder interferometer with a double-slot hybrid plasmonic waveguide

Xu Sun, Daoxin Dai, Lars Thylén, and Lech Wosinski
Opt. Express 23(20) 25688-25699 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved