OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 16, Iss. 6 — Jun. 1, 1998
  • pp: 1013–

Thermal Effects in Doped Fibers

M. K. Davis, M. J. F. Digonnet, Richard H. Pantell, and Life Fellow

Journal of Lightwave Technology, Vol. 16, Issue 6, pp. 1013- (1998)


View Full Text Article

Acrobat PDF (395 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A theoretical analysis of the pump-induced temperature change and associated thermal phase shift occurring in a pumped doped fiber is presented. Although the primary devices targeted are all-optical switches based on doped fibers, where such effects can be detrimental, this analysis is also applicable to lasers, amplifiers, and other doped fiber devices. The effects of a single pump pulse, multiple pulses and continuous wave (CW) pumping are investigated, both in the dynamic and steady-state regimes. Simple expressions are derived for the thermal relaxation time constant of a fiber, and for its steady-state temperature rise and thermal phase shift under CW pumping. This study predicts that in all-optical fiber switches utilizing a reasonably good dopant the thermal effect due to a single short pulse is negligible in all interferometers, while the steady-state effect can be sizable in a standard fiber Mach-Zehnder but is negligible in a twin-core fiber, a two-mode fiber, and a specially designed Mach-Zehnder interferometer.

[IEEE ]

Citation
M. K. Davis, M. J. F. Digonnet, Richard H. Pantell, and Life Fellow, "Thermal Effects in Doped Fibers," J. Lightwave Technol. 16, 1013- (1998)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-16-6-1013

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited