Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 16,
  • Issue 6,
  • pp. 1077-
  • (1998)

Chip-Level Detection in Optical Code Division Multiple Access

Not Accessible

Your library or personal account may give you access

Abstract

A new detector for optical code-division multiple-access (CDMA) communication systems is proposed. This detector is called the chip-level receiver. Both ON-OFF keying (OOK) and pulse-position modulation (PPM) schemes, that utilize this receiver, are investigated in this paper. For OOK, an exact bit error rate is evaluated taking into account the effect of both multiple-user interference and receiver shot noise. An upper bound on the bit error probability for pulse-position modulation (PPM)-CDMA system is derived under the above considerations. The effect of both dark current and thermal noises is neglected in our analysis. Performance comparisons between chip-level, correlation, and optimum receivers are also presented. Both correlation receivers with and without an optical hardlimiter are considered. Our results demonstrate that significant improvement in the performance is gained when using the chip-level receiver in place of the correlation one. Moreover the performance of the chip-level receiver is asymptotically close to the optimum one. Nevertheless, the complexity of this receiver is independent of the number of users, and therefore, much more practical than the optimum receiver.

[IEEE ]

PDF Article
More Like This
Optical Code Division Multiple Access Network Transmission With M-ary Chip Symbols

Aminata A. Garba and Jan Bajcsy
J. Opt. Commun. Netw. 3(5) 435-446 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.