Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 16,
  • Issue 7,
  • pp. 1249-
  • (1998)

Multichip Optical Hybrid Integration Technique with Planar Lightwave Circuit Platform

Not Accessible

Your library or personal account may give you access

Abstract

A two-step bonding technique for optical device assembly on a planar lightwave circuit platform was developed, which consists of a chip-by-chip thermo-compression prebonding step and a simultaneous reflow bonding step. The technique was used to realize multichip optical integration on the platform. The characteristics of the bonding technique were examined by investigating its strength and accuracy. The bonding accuracies in the horizontal and vertical directions were 1.1 and 0.8 {{\mu}}m, respectively, with high bonding strength. The technique was first applied to a 3 chip integrated transceiver module and the 136 fabricated modules exhibited good performance. The average coupling loss between the laser diodes and the waveguide was estimated to be 4.1 dB and stable characteristics were observed during 1200 cycle thermal shock tests between 40 and 85C. Next, the two-step bonding technique was used for a 4 channel laser diode module on which 8 optical device chips were integrated and a low coupling loss was achieved of better than 4.2 dB which is as good as that of the 3 chip integrated optical modules.

[IEEE ]

PDF Article
More Like This
Polarization insensitive 25-Gbaud direct D(Q)PSK receiver based on polymer planar lightwave hybrid integration platform

Jin Wang, Crispin Zawadzki, Nelson Mettbach, Walter Brinker, Ziyang Zhang, Detlef Schmidt, Norbert Keil, Norbert Grote, and Martin Schell
Opt. Express 19(13) 12197-12207 (2011)

Multichannel and high-density hybrid integrated light source with a laser diode array on a silicon optical waveguide platform for interchip optical interconnection

Takanori Shimizu, Nobuaki Hatori, Makoto Okano, Masashige Ishizaka, Yutaka Urino, Tsuyoshi Yamamoto, Masahiko Mori, Takahiro Nakamura, and Yashuhiko Arakawa
Photon. Res. 2(3) A19-A24 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.