OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 17, Iss. 11 — Nov. 1, 1999
  • pp: 2063–

Optical and Confinement Properties of Two-Dimensional Photonic Crystals

H. Benisty, C. Weisbuch, D. Labilloy, M. Rattier, C. J. M. Smith, T. F. Krauss, Richard M. De La Rue, R. Houdre, U. Oesterle, C. Jouanin, and D. Cassagne

Journal of Lightwave Technology, Vol. 17, Issue 11, pp. 2063- (1999)

View Full Text Article

Acrobat PDF (1013 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We describe experiments on a quasi-two-dimensional (2-D) optical system consisting of a triangular array of air cylinders etched through a laser-like Ga(Al)As waveguiding heterostructure. Such a configuration is shown to yield results very well approximated by the infinite 2-D photonic crystal (PC). We first present a set of measurements of the optical properties (transmission, reflection, and diffraction) of slabs of these photonic crystals, including the case of in-plane Fabry-Perot cavities formed between two such crystals. The measurement method makes use of the guided photoluminescence of embedded quantum wells or InAs quantum dots to generate an internal probe beam. Out-of-plane scattering losses are evaluated by various means. In a second part, in-plane micrometer-sized photonic boxes bounded by circular trenches or by two-dimensional photonic crystal are probed by exciting spontaneous emission inside them. The high quality factors observed in such photon boxes demonstrate the excellent photon confinement attainable in these systems and allow to access the detail of the modal structure. Last, some perspectives for applications are offered.

© 1999 IEEE

H. Benisty, C. Weisbuch, D. Labilloy, M. Rattier, C. J. M. Smith, T. F. Krauss, Richard M. De La Rue, R. Houdre, U. Oesterle, C. Jouanin, and D. Cassagne, "Optical and Confinement Properties of Two-Dimensional Photonic Crystals," J. Lightwave Technol. 17, 2063- (1999)

Sort:  Journal  |  Reset


  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., vol. 58, pp. 2059-2062, 1987.
  2. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Molding the Flow of Light.Princeton, NJ: Princeton Univ. Press, 1995.
  3. Y. A. Vlasov, K. Luterova, I. Pelant, B. Hönerlage, and V. N. Astratov, "Enhancement of optical gain of semiconductors embedded in three-dimensional photonic crystals," Appl. Phys. Lett., vol. 71, pp. 1616-1618, 1997.
  4. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kutz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature, vol. 394, pp. 251-253, 1998.
  5. J. D. Fleming and S. Y. Lin, "A three-dimensional photonic crystal with stop band from 1.35 to 1.95 microns," Opt. Lett., vol. 24, pp. 49-51, 1999.
  6. S. Noda, N. Yamamoto, and A. Sasaki, "New realization method for three-dimensional photonic crystal in optical wavelength region," Jpn. J. Appl. Phys., vol. 35, pp. L909-L912, 1996.
  7. N. Yamamoto, S. Noda, and A. Cutinan, "Development of one period of three-dimensional photonic crystal in 5-10 µm wavelength region by wafer fusion and laser beam diffraction pattern observation technique," Jpn. J. Appl. Phys., vol. 37, pp. 1052-1054, 1998.
  8. C. C. Cheng, A. Scherer, R.-C. Tyan, Y. Fainman, G. Witzgall, and E. Yablonovitch, "New fabrication techniques for high quality photonic crystals," J. Vac. Sci. Technol. B, vol. 15, pp. 2764-2767, 1997.
  9. Y. N. Astratov, Y. A. Vlasov, O. Z. Karimov, A. A. Kaplyanskii, Y. G. Musikhin, N. A. Bert, V. N. Bogomolov, and A. V. Prokofiev, "Photonic band gaps in 3D ordered FCC silica matrices," Phys. Lett. A, vol. 222, pp. 349-353, 1996.
  10. T. F. Krauss, R. M. De La Rue, and S. Brand, "Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths," Nature, vol. 383, pp. 699-702, 1996.
  11. M. D. B. Charlton, G. J. Parker, and S. W. Roberts, "Guided mode analysis, and fabrication of a two dimensional visible photonic band structure confined within a planar semiconductor waveguide," Mater. Sci. Eng. B, vol. 49, pp. 155-165, 1997.
  12. T. Baba and T. Matsuzaki, "GaInAsP/InP 2-dimensional photonic crystals," in Microcavities and Photonic Bandgaps: Physics and Applications, J. Rarity and C. Weisbuch, Eds.Dordrecht: Kluwer, 1996, vol. 324.
  13. T. Baba, "Photonic crystals and microdisk cavities based on GaInAsP-InP system," IEEE J. Quantum Electron., vol. 3, pp. 808-830, 1997.
  14. U. Grüning, V. Lehmann, S. Ottow, and K. Busch, "Macroporous silicon with a complete 2-D PBG centered at 5 µm," Appl. Phys. Lett., vol. 68, pp. 747-749, 1996.
  15. H.-B. Lin, R. J. Tonucci, and A. J. Campillo, "Observation of two-dimensional photonic band behavior in the visible," Appl. Phys. Lett., vol. 68, pp. 2927-2929, 1996.
  16. S.-Y. Lin, V. M. Hietala, L. Wang, and E. D. Jones, "Highly-dispersive photonic band-gap prism," Opt. Lett., vol. 21, pp. 1771-1773, 1996.
  17. A. Rosenberg, "Near infrared two-dimensional photonic band-gap materials," Opt. Lett., vol. 21, pp. 830-833, 1996.
  18. D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdre, and U. Oesterle, "Use of guided spontaneous emission of a semiconductor to probe the optical properties of two-dimensional photonic crystals," Appl. Phys. Lett., vol. 71, pp. 738-740, 1997.
  19. D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, R. M. De La Rue, V. Bardinal, R. Houdre, U. Oesterle, D. Cassagne, and C. Jouanin, "Quantitative measurement of transmission, reflection and diffraction of two-dimensional photonic bandgap structures at near-infrared wavelengths," Phys. Rev. Lett., vol. 79, pp. 4147-4150, 1997.
  20. D. Labilloy, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdre, and U. Oesterle, "Finely resolved transmission spectra and band structure of two-dimensional photonic crystals using InAs quantum dots emission," Phys Rev., vol. B59, pp. 1649-1652, 1999.
  21. D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, V. Bardinal, and U. Oesterle, "Demonstration of a cavity mode between two-dimensional photonic-crystal mirrors," Electron. Lett., vol. 33, pp. 1978-1980, 1997.
  22. C. J. M. Smith, T. F. Krauss, R. D. L. Rue, D. Labilloy, H. Benisty, C. Weisbuch, U. Oesterle, and R. Houdre, "In-plane microcavity resonators with two-dimensional photonic bandgap mirrors," Inst. Elect. Eng. Proc. Optoelectron., vol. 145, pp. 337-342, 1998.
  23. --, "Near-infrared microcavities confined by two-dimensional photonic bandgap crystals," Electron. Lett., vol. 35, pp. 228-230, 1999.
  24. T. F. Krauss and R. M. De La Rue, "Exploring the two-dimension photonic bandgap in semiconductors," in Photonic Band Gap Materials, C. M. Soukoulis, Ed.Dordrecht: Kluwer, 1996, pp. 427-436.
  25. D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Houdre, and U. Oesterle, "High-finesse disk microcavity based on a circular Bragg reflector," Appl. Phys. Lett., vol. 73, pp. 1314-1316, 1998.
  26. A. Mekis, S. Fan, and J. D. Joannopoulos, "Bound states in photonic crystal waveguides and waveguide bends," Phys. Rev. B, vol. 58, pp. 4809-4812, 1998.
  27. R. D. Meade, A. Deveny, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, "Novel applications of photonic band gap materials: Low-loss bends and high Q cavities," J. Appl. Phys., vol. 75, pp. 4753-4755, 1994.
  28. J. C. Chen, H. A. Haus, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Optical filters from photonic band gap air bridges," IEEE J. Lightwave Technol., vol. 14, pp. 2575-2578, 1996.
  29. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic bandgap microcavities in optical waveguides," Nature, vol. 390, pp. 143-145, 1997.
  30. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop tunneling through localized states," Phys. Rev. Lett., vol. 80, pp. 960-963, 1996.
  31. H. Benisty, H. De Neve, and C. Weisbuch, "Impact of planar microcavity effects on light extraction--I: Basic concepts and analytical trends," IEEE J. Quantum Electron., vol. 34, pp. 1612-1631, 1998.
  32. J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett., vol. 81, pp. 1110-1113, 1998.
  33. K. Sakoda, "Transmittance and Bragg reflectivity of two-dimensional photonic lattices," Phys. Rev. B, vol. 52, pp. 8992-9002, 1995.
  34. D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, D. Cassagne, C. Jouanin, R. Houdre, U. Oesterle, and V. Bardinal, "Diffraction efficiency and guided light control by two-dimensional photonic-band-gap lattices," IEEE J. Quantum Electron., to be published.
  35. M. Plihal and A. A. Maradudin, "Photonic band structure of two-dimensional systems: The triangular lattice," Phys. Rev. B, vol. 44, pp. 8565-8571, 1991.
  36. W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Measurement of photonic band structure in a two-dimensional periodic array," Phys. Rev. Lett., vol. 68, pp. 2023-2026, 1992.
  37. P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency," Phys. Rev. B, vol. 54, pp. 7837-7841, 1996.
  38. K. Sakoda, "Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices," Phys. Rev. B, vol. 52, pp. 7982-7989, 1995.
  39. J. M. Gerard, J. Y. Marzin, G. Zimmermann, A. Ponchet, O. Cabrol, D. Barrier, B. Jusserand, and B. Sermage, "InAs/GaAs quantum boxes obtained by self-organized growth: Intrinsic electronic properties and applications," Solid State Electron., vol. 40, pp. 807-814, 1996.
  40. J. M. Gerard, D. Barrier, J.-Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, "Quantum boxes as active probes for photonic microstructures: The pillar microcavity case," Appl. Phys. Lett., vol. 69, pp. 449-451, 1996.
  41. V. Berger, I. Pavel, E. Ducloux, and F. Lafon, "Finite-element Maxwell's equations modeling of etched air/dielectric Bragg mirrors," J. Appl. Phys., vol. 82, pp. 5300-5304, 1997.
  42. B. D'Urso, O. Painter, J. O'Brien, T. Tombrello, A. Yariv, and A. Scherer, "Modal reflectivity in finite-depth two-dimensional photonic crystal microcavities," J. Opt. Soc. Amer. B, vol. 15, pp. 1155-1159, 1998.
  43. R. P. Stanley, R. Houdre, U. Oesterle, M. Gailhanou, and M. Ilegems, "Ultra-high finesse microcavity with distributed Bragg reflectors," Appl. Phys. Lett., vol. 65, pp. 1883-1885, 1994.
  44. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-gallery mode microdisk lasers," Appl. Phys. Lett., vol. 60, pp. 289-291, 1992.
  45. R. K. Chang and A. J. Campillo, "Optical processes in microcavities," in Advanced Series in Applied Physics.Singapore: World Scientific, 1996, vol. 3.
  46. A. A. Tovar and G. H. Clark, "Concentric-circle-grating, surface emitting laser beam propagation in complex optical systems," J. Opt. Soc. Amer. A, vol. 14, pp. 3333-3340, 1997.
  47. R. K. Lee, O. J. Painter, B. D'Urso, A. Scherer, and A. Yariv, "Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths," Appl. Phys. Lett., vol. 71, pp. 1522-1524, 1999.
  48. A. Scherer, O. Painter, B. D'Urso, R. Lee, and A. Yariv, "InGaAsP photonic band gap crystal membrane resonators," J. Vac. Sci. Technol. B, vol. 16, pp. 3906-3910, 1998.
  49. H. Benisty, "Modal analysis of optical guides with two-dimensional photonic band-gap boundaries," J. Appl. Phys., vol. 79, p. 7483, 1996.
  50. P. Pottier, C. Seassal, X. Letartre, J. L. Leclercq, P. Viktorovitch, D. Cassagne, and C. Jouanin, "Triangular and hexagonal high Q-factor 2-D photonic bandgap cavities on III-IV suspended membranes," this issue, pp. 2058-2062.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited