OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 17, Iss. 8 — Aug. 1, 1999
  • pp: 1326–

Design Theory of Long-Distance WDM Dispersion-Managed Transmission System

Fariborz Mousavi Madani and Kazuro Kikuchi

Journal of Lightwave Technology, Vol. 17, Issue 8, pp. 1326- (1999)

View Full Text Article

Acrobat PDF (307 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


This paper describes a novel design theory of long-distance wavelength division multiplexed (WDM) dispersion-managed optical transmission systems. Assuming that the transmission distance, bit rate, and number of WDM channels are initially known, we investigate the optimum dispersion allocation and input power per channel to achieve the minimum channel spacing. Based on the design guidelines for single-channel and multichannel systems, we establish the optimal design strategy. Details of the design procedure are demonstrated for 2.5-, 5-, and 10-Gb/s10000 km WDM systems by using computer simulations. Next, we study the impact of the fiber dispersion slope on the usable wavelength span, and show that the attainable capacity of the representative 5-Gb/s 10000 km WDM system employing the postcompensation scheme can not exceed 100 Gb/s. Finally, we propose several techniques to approach the ultimate capacity of the WDM system and show that up to 1 Tb/s (2005 Gb/s) 10000 km system can be implemented without utilizing the in-line dispersion slope compensation scheme. We also discuss the 10 Gb/s-10000 km WDM system employing in-line dispersion slope compensation.


Fariborz Mousavi Madani and Kazuro Kikuchi, "Design Theory of Long-Distance WDM Dispersion-Managed Transmission System," J. Lightwave Technol. 17, 1326- (1999)

Sort:  Journal  |  Reset


  1. N. S. Bergano and C. R. Davidson, "Wavelength division multiplexing in long-haul transmission systems," J. Lightwave Technol., vol. 14, pp. 1299-1308, 1996.
  2. T.-K. Chiang, N. Kagi, M. E. Marhic, and L. G. Kazovsky, "Cross-phase modulation in fiber links with multiple optical amplifiers and dispersion compensators," J. Lightwave Technol., vol. 14, pp. 249-260, Mar. 1996.
  3. T. Matsuda, A. Naka, and S. Saito, "Comparison between NRZ and RZ signal formats for in-line amplifier transmission in the zero-dispersion regime," J. Lightwave Technol., vol. 16, pp. 340-348, Mar. 1998.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited