OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 17, Iss. 8 — Aug. 1, 1999
  • pp: 1336–

Trellis-Coded Pulse-Position Modulation for Optical Communication Systems Impaired by Pulsewidth Inaccuracies

Kamran Kiasaleh, Tsun-Yee Yan, and Meera Srinivasan

Journal of Lightwave Technology, Vol. 17, Issue 8, pp. 1336- (1999)


View Full Text Article

Acrobat PDF (313 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A trellis-coded pulse-position modulation (T-PPM) scheme for direct-detection photon communications over unguided channels is described. The purpose of this signaling method is to combat performance degradation due to the spreading of received signal pulses caused by transmitting laser distortion and the finite area and bandwidth of optical detectors. The T-PPM scheme relies upon use of a set partitioning methodology to increase minimum distance using a simple convolutional encoder. The Viterbi algorithm is used at the receiver to separate the signaling set as part of the demodulation process. It is shown through both analysis and Monte Carlo simulation of an avalanche photodiode based receiver system that T-PPM can restore performance losses due to reduced peak intensity during the detection process. Furthermore, for a large range of background radiation levels, the average number of required signal photons per information bit for T-PPM is smaller than that of uncoded PPM. Specific examples show that for a symbol error rate of 0.001, when the received pulses extend over 4 PPM slot widths, the average laser energy per symbol for 256-ary T-PPM could be reduced by as much as 2 dB.

[IEEE ]

Citation
Kamran Kiasaleh, Tsun-Yee Yan, and Meera Srinivasan, "Trellis-Coded Pulse-Position Modulation for Optical Communication Systems Impaired by Pulsewidth Inaccuracies," J. Lightwave Technol. 17, 1336- (1999)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-17-8-1336


Sort:  Journal  |  Reset

References

References are not available for this paper.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited