OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 19, Iss. 5 — May. 1, 2001
  • pp: 603–

A Performance Analysis of an All-Optical Clock Extraction Circuit Based on Fabry-Perot Filter

Xiang Zhou, Chao Lu, Ping Shum, Hossam H. M. Shalaby, T. H. Cheng, and Peida Ye

Journal of Lightwave Technology, Vol. 19, Issue 5, pp. 603- (2001)


View Full Text Article

Acrobat PDF (476 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A performance analysis of an optical clock extraction circuit based on a Fabry-Perot filter (FPF) is presented. Two analytical methods,time-domain and frequency-domain analysis, are developed in this paper. Time-domain analysis shows that there is no phase jitter in the extracted optical clock if the free spectral range (FSR) of the FPF is exactly equal to the signal clock frequency. Based on this, we obtain an analytical expression for root mean square (rms) amplitude jitter of the extracted optical clock in time domain, in which we have taken the impacts of carrier frequency drift and carrier phase noise into account. When the FSR of the FPF deviates from the signal clock frequency, both phase jitter and amplitude jitter will occur in the extracted optical clock. In this situation, a more general frequency-domain method is developed to deal with the timing performance under the assumption that carrier phase noise is negligible. This method allows us to calculate both rms phase jitter and rms amplitude jitter of the extracted optical clock. Using the developed two methods, we present a detailed numerical investigation on the impacts of finesse of the FPF, carrier frequency drift, resonator detuning,carrier phase noise, and optical pulse chirp on the timing performance. Finally,the application of this circuit in multiwavelength clock recovery is discussed.

© 2001 IEEE

Citation
Xiang Zhou, Chao Lu, Ping Shum, Hossam H. M. Shalaby, T. H. Cheng, and Peida Ye, "A Performance Analysis of an All-Optical Clock Extraction Circuit Based on Fabry-Perot Filter," J. Lightwave Technol. 19, 603- (2001)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-19-5-603


Sort:  Journal  |  Reset

References

  1. L. Adams, E. Kintzer and J. Fujimoto, "All-optical clock recovery using a mode-locked figure eight laser with a semiconductor nonlinearity", Electron. Lett., vol. 30, p. 1696, Sept. 1994.
  2. R. Ludwig, "10 GHz all-optical clock recovery using a mode locked semiconductor laser in a 40 Gb/s, 100 km transmission experiment", in Proc. OFC'96, Mar. 1996, pp. 131- 132.
  3. A. Ellis, K. Smith and D. Patrick, "All-optical clock recovery at bit rates up to 40 Gbit/s", Electron. Lett., vol. 29, pp. 1741-1743, Sept. 1993.
  4. S. Kawanishi and M. Saruwatari, "Ultrahigh-speed PLL-type clock recovery circuit based on all-optical gain modulation in travelling-wave laser diode amplifier as a 50 GHz detector", Electron. Lett., vol. 29, pp. 1714-1715, Sept. 1993.
  5. O. Kamatani and S. Kawanishi, "Ultrahigh-speed clock recovery with phase lock loop based on four-wave mixing in a traveling-wave laser diode amplifier", J. Lightwave Technol., vol. 14, pp. 1757-1767, Aug. 1996 .
  6. M. Jinno, T. Matsumoto and M. Koga, "All-optical timing extraction using an optical tank circuit", IEEE Photon. Technol. Lett., vol. 2, pp. 203-204, Feb. 1990.
  7. M. Jinno and T. Matsumoto, "Optical tank circuit used for all-optical timing recovery", J. Quantum Electron., vol. 28, pp. 895-900, Apr. 1992.
  8. H. Kawakami, Y. Miyamoto, T. Kataoka and K. Hagimoto, "All-optical timing clock extraction using multiple wavelength pumped Brillouin amplifier", IEICE Trans. Commun. , vol. E78-B, pp. 694-700, May 1995.
  9. D. L. Butler, J. S. Wey, M. W. Chbat, G. L. Burdge and J. Goldhar, "Optical clock recovery from a data stream of an arbitrary bit rate by use of stimulated Brillouin scattering", Opt. Lett., vol. 20, no. 6, pp. 560-562, June 1995.
  10. C. Johnson, K. Demarest, C. Allen, R. Hui, K. V. Peddanarappagari and B. Zhu, "Multi-wavelength all-optical clock recovery", IEEE Photon. Technol. Lett., vol. 11, pp. 895 -897, July 1999.
  11. X. Zhou, H. H. M. Shalaby, L. Chao, T. H. Cheng and P. Ye, "A performance analysis of all-optical clock extraction circuit based on stimulated Brillouin scattering", J. Lightwave Technol., vol. 18, pp. 1453-1466, Oct. 2000 .
  12. J. A. Armstrong, "Theory of interferometer analysis of laser noise", J. Optic. Soc. Amer., vol. 56, pp. 1024-1031, Aug. 1966 .
  13. M. J. W. Rodwell, D. M. Bloom and K. J. Weingarten, "Subpicosecond laser timing stabilization", IEEE J. Quantum Electron., vol. 25, pp. 817-827, Apr. 1989 .
  14. D. A. Leep and D. A. Holm, "Spectral measurement of timing jitter in gain-switched semiconductor lasers", Appl. Physics. Lett., vol. 60, pp. 2451-2453, Oct. 1992.
  15. K. L. Hall, "40 Gbit/s optical packet buffering", in Proc. OFC , Mar. 1997, ThD3.
  16. M. Kalyvas, C. Bintjas, K. Houbavlis, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann and R. Dall'Ara, "All-optical write/read memory for 20 Gbit/s data packets", Electron. Lett., vol. 36, no. 12, pp. 1050-1051, June 2000.
  17. D. K. Hunter and D. G. Smith, "New architecture for optical TDM switching", J. Lightwave Technol., vol. 11, pp. 495-511, Mar. 1993 .
  18. H. J. Lee and H. G. Kim, "Polarisatin-independent all-optical circulating shift register based on self-phase modulation of semiconductor optical amplifier", Electron. Lett., vol. 35, pp. 170-171, Jan. 1999 .
  19. T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori and H. Ono, "1 Tbit/s (100 Gbit/s '10 Channel) OTDM/WDM transmission using a single supercontinuum WDM source", Electron. Lett., vol. 32, pp. 906-907, May 1996.
  20. T. Morioka, K. Uchiyama, S. Kawanishi, S. Suzuki and M. Saruwatari, "Multi-wavelength picosecond pulse source with low jitter and high optical frequency stability based on 200 nm supercontinuum filtering", Electron. Lett., vol. 31, pp. 1064-1065, June 1995 .
  21. S. Kawanishi, H. Takara, T. Morioka, O. Kamatani and M. Saruwatari, "200 Gbit/s, 100 km time-division-multiplexed optical transmission uisng supercontinuum pulses with prescaled PLL timing extraction and all-optical demultiplexer", Electron. Lett., vol. 31, pp. 816-817, May 1995.
  22. S. Accheo and L. Boivin, "Investigation and design rules of supercontinuum sources for WDM applications", Proc. OFC, vol. 3, pp. 2-4, Mar. 2000.
  23. R. R. Alfano, Supercontinuum Laser Source, Heidelberg: Springer-Verlag, 1989.
  24. G. A. Nowak, J. Kim and M. N. Islam, "Stable 200 nm TDM/WDM source based on continuum generation in 2 m of fiber", in Proc. OFC, Mar. 1999, TuB3-1.
  25. Mathason and P. J. Delfyett, "Pulsed injected locking dynamics of passively mode-locked external-cavity semiconductor laser systems for all-optical clock recovery", J. Lightwave Technol., vol. 18, pp. 1111-1120, Aug. 2000.
  26. A. Buchwald and K. W. Martin, Integated Fiber-Optic Receiver, New York: Kluwer Academic, 1995, pp. 27-103.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited