OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 19, Iss. 5 — May. 1, 2001
  • pp: 655–

Operation Principles of Wavelength Sensing Using Transparent Properties of SemiconductorOptical Diodes

San-Liang Lee, Ching-Tang Pien, and Yu-Yi Hsu

Journal of Lightwave Technology, Vol. 19, Issue 5, pp. 655- (2001)

View Full Text Article

Acrobat PDF (301 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The wavelength-sensitive transparent properties of direct-bandgap semiconductor optical diodes (DBSODs) can be utilized for wavelength sensing. A simplified theory is used to describe the operation principles of such wavelength sensing schemes. The principles can be applied to realize different measures,including sensing with or without pilot tone for single wavelength or multiple wavelengths. The simplified theory can also provide an easy way for estimating the wavelength resolution and accuracy. The wavelength resolution is demonstrated to be better than 0.01 nm by detecting the induced junction voltage for a fixed bias. The resolution is limited by the current resolution of the bias source to 0.03 nm when the wavelength is to be discriminated by transparent current detection. The feasibility and limitation of multiwavelength sensing using a single semiconductor optical amplifier are addressed both theoretically and experimentally. The limiting factors, including the power dependency and temperature stability, of the sensing schemes are also investigated.

© 2001 IEEE

San-Liang Lee, Ching-Tang Pien, and Yu-Yi Hsu, "Operation Principles of Wavelength Sensing Using Transparent Properties of SemiconductorOptical Diodes," J. Lightwave Technol. 19, 655- (2001)

Sort:  Journal  |  Reset


  1. C. A. Brackett, "Dense wavelength division multiplexing networks: Principles and applications", IEEE J. Select. Areas Commun., vol. 8, pp. 948-964, Aug. 1990.
  2. A. J. Keating and A. J. Lowery, "Wavelength stabilization in packet-switched WDM networks", J. Lightwave Technol., vol. 15, no. 1, pp. 76-85, 1997.
  3. M. Guy, B. Villeneuve, C. Latrasse and M. Tetu, "Simultaneous absolute frequency control of laser transmitters in both 1.3 and 1.55 mm bands for multiwavelength communication systems", J. Lightwave Technol., vol. 14, no. 6, pp. 1136-1143, 1996 .
  4. T. Ikegami, S. Sudo and Y. Sakai, Frequency Stabilization of Semiconductor Laser Diodes, Boston, MA: Artech House, 1995.
  5. L. E. Nelson, S. T. Cundiff and C. R. Giles, "Optical monitoring using data correlation for WDM systems", IEEE Photon. Technol. Lett., vol. 10, pp. 1030-1032, 1998.
  6. J. P. Monochalin, M. J. Kelly, J. E. Thomas, N. A. Kumit, A. Szoke, P. H. Lee and A. Javan, "Accurate laser wavelength measurement with a precision two-beam scanning Michelson interferometer", Appl. Opt. , vol. 20, no. 5, pp. 736-757, 1981.
  7. S. J. Bennett and P. Gill, "A digital interferometer for wavelength measurement", J. Phys., vol. 13, pp. 174 -177, 1980.
  8. M. B. Morris, T. J. McIlrath and J. J. Snyder, "Fizeau wavemeter for pulsed laser wavelength measurement", Appl. Opt., vol. 23, pp. 3862 -3868,
  9. T. Coroy, R. M. Measures, T. H. Wood and C. A. Burrus, "Active wavelength measurement system using an InGaAs-InP quantum-well electroabsorption filtering detector", IEEE Photon. Technol. Lett., vol. 8, pp. 1686 -1688, 1996.
  10. A. Densmore and P. E. Jessop, "A quantum-well waveguide photodetector for high-precision wavelength monitoring about 1.55 µ m", IEEE Photon. Technol. Lett., vol. 11, no. 12, pp. 1653 -1655, 1999.
  11. S.-L. Lee, "Wavelength measurement and tracking using semiconductor laser amplifiers for applications in photonic networks", IEEE Photon. Technol. Lett., vol. 10, no. 3, pp. 439-441, 1998.
  12. S.-L. Lee, C.-T. Pien and Y.-Y. Hsu, "Wavelength monitoring in DWDM networks using low cost semiconductor laser diode/amplifiers", in Proc. Conf. Optical Fiber Communications 2000 (OFC), Baltimore, MD, Mar. 2000.
  13. D. Marcuse, "Heterodyne detection with an injection laser-Part I: Principle of operation and conversion efficiency", IEEE J. Quantum Electron. , vol. 26, no. 1, pp. 615-627, 1990.
  14. M. Gustavsson, A. Karlsson and L. Thylen, "Traveling wave semiconductor laser amplifier detectors", J. Lightwave Technol., vol. 8, no. 4, pp. 610-617, 1990.
  15. R. Hui, I. Maio and I. Montrosset, "Analysis of the all-electrical automatic gain control of traveling-wave semiconductor laser amplifiers", Proc. Inst. Elect. Eng. Optoelectron., vol. 141, no. 1, pp. 65-68, 1994.
  16. R. M. Fortenberry, A. J. Lowery and R. S. Tucker, "Up to 16 dB improvement in detected voltage using two-section semiconductor optical amplifier detector", Electron. Lett., vol. 28, no. 5, pp. 474-476, 1992.
  17. P. A. Andrekson, N. A. Olsson, T. Tanbun-Ek, R. A. Logan, D. Coblentz and H. Temkin, "Novel technique for determining internal loss of individual semiconductor lasers", Electron. Lett., vol. 29, no. 2, pp. 171-172, 1992.
  18. S.-L. Lee, M. E. Heimbuch, D. A. Cohen, L. A. Coldren and S. P. DenBarrs, "Integration of semiconductor laser amplifiers with sampled grating tunable lasers for WDM applications", IEEE J. Select. Topics Quantum Electron., vol. 3, no. 2, pp. 615-627, 1997.
  19. S.-L. Lee, "Analytical formula of wavelength dependent transparent current and its implications for designing wavelength sensors and WDM lasers", IEEE J. Select. Topics Quantum Electron.,
  20. S.-L. Chuang, Physics of Optoelectronic Devices, New York: Wiley, 1985, ch. 10.
  21. T. Makino, "Analytical formulas for the optical gain of quantum wells", IEEE J. Quantum Electron., vol. 32, no. 3, pp. 493-501, 1996.
  22. A. B. Carlson, Communication Systems, 3rd ed. New York: McGraw-Hill, 1986, pp. 220-225.
  23. D. Derickson, Ed., Fiber Optic Test and Measurement, Englewood Cliffs, NJ: Prentice-Hall, 1998, p. 121.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited