OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 19, Iss. 5 — May. 1, 2001
  • pp: 682–

A Novel Structure for the Intrinsic Fabry-Perot Fiber-Optic Temperature Sensor

Woo-Hu Tsai and Chun-Jung Lin

Journal of Lightwave Technology, Vol. 19, Issue 5, pp. 682- (2001)

View Full Text Article

Acrobat PDF (232 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A novel structure of the intrinsic Fabry-Perot interference (IFPI) fiber temperature sensor is presented. The sensor uses two different core diameter fibers and produces a reflective mirror by fusing uncoated bare fibers. This procedure not only solves the problem of controlling thickness and reflectance of the thin film but also provides easier and cheaper technologies for IFPI fiber sensors. Theoretical and experimental aspects of the intrinsic Fabry-Perot cavity are described. Both theoretical and experimental results from this novel structure show good agreement with those from the traditional Fabry-Perot fiber sensor.

© 2001 IEEE

Woo-Hu Tsai and Chun-Jung Lin, "A Novel Structure for the Intrinsic Fabry-Perot Fiber-Optic Temperature Sensor," J. Lightwave Technol. 19, 682- (2001)

Sort:  Journal  |  Reset


  1. "Fiber optic smart structures and skins", in Proc. SPIE, vol. 986, Boston, MA, Sept. 1988.
  2. J. F. Dorighi, S. Krishnaswamy and J. D. Achenbach, "Stabilization of an embedded fiber optic Fabry-Perot sensor for ultrasound detection", IEEE Trans. Ultrason., Ferroelectron., Freq. Contr., vol. 42, no. 5, pp. 820-824, 1995.
  3. Y. L. Lo, J.S. Sirkis and C. C. Chang, "Passive signal processing of in-line fiber etalon sensor for high strain-rate loading", J. Lightwave Technol., vol. 15, no. 8, pp. 1578-1586, 1997.
  4. H. Singh and J. S. Sirkis, "Simultaneously measuring temperature and strain using optical fiber microcavities", J. Lightwave Technol., vol. 15, no. 4, pp. 647-653, 1997.
  5. H. S. Choi, H. F. Taylor and C. E. Lee, "High-performance fiber-optic temperature sensor using low-coherence interferometry", Opt. Lett., vol. 22, no. 23, pp. 1814-1816, 1997.
  6. C. E. Lee and H. F. Taylor, "Interferometric optical fiber sensors using internal mirrors", Electron. Lett., vol. 24, no. 4, pp. 193-194, 1988.
  7. S. M. Tseng and C. L. Chen, "Optical fiber Fabry-Perot sensors", Appl. Opt., vol. 27, no. 3, pp. 547-551, 1988.
  8. C. E. Lee, R. A. Atkins and H. F. Taylor, "Performance of a fiber-optic temperature sensor from -200 to 1050° C", Opt. Lett., vol. 13, pp. 1038-1040, 1988.
  9. F. J. Arregui, I. R. Matias, Y. J. Liu, K. M. Lenahan and R. O. Claus, "Optical fiber nanometer-scale Fabry-Perot interferometer formed by the ionic self-assembly monolayer process", Opt. Lett., vol. 24, no. 9, pp. 596-598, 1999.
  10. S. C. Chao, W. H. Tsai and M. S. Wu, "Extended Gaussian approximation for single-mode graded-index fibers", J. Lightwave Technol., vol. 12, no. 3, pp. 392-395, 1994.
  11. T. Tamir, Ed., Guided-Wave Optoelectronics, New York: Spring-Verlag, 1988, pp. 92-102.
  12. J. J. Alcoz, C. E. Lee and H. F. Taylor, "Embedded fiber-optic Fabry-Perot ultrasound sensor", IEEE Trans. Ultrason., Ferroelectron., Freq. Contr., vol. 37, no. 4, pp. 302-306, 1990.
  13. C. E. Lee, H. F. Taylor, A. M. Markus and E. Udd, "Optical-fiber Fabry-Perot embedded sensor", Opt. Lett., vol. 14, no. 21, pp. 1225-1227, 1989.
  14. T. E. Rozzi, "Rigorous analysis of the step discontinuity in a planar dielectric waveguide", IEEE Trans. Microwave Theory Tech., vol. MTT-26, no. 7, pp. 738-809, 1978.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited