OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 19, Iss. 5 — May. 1, 2001
  • pp: 687–

Large-Scale Multiplexing of Interferometric Fiber-Optic Sensors Using TDM and DWDM

Geoffrey A. Cranch and Philip J. Nash

Journal of Lightwave Technology, Vol. 19, Issue 5, pp. 687- (2001)

View Full Text Article

Acrobat PDF (389 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


This paper describes multiplexing schemes for interferometric fiber sensors based on time-division multiplexed and dense wavelength-division multiplexing using optical add/drop multiplexers. The results of an experimental arrangement, which is based on one of the architectures, is also presented. Topics include a discussion of the noise sources in the system, dynamic range,and a characterization of the distributed feedback fiber laser source noise. We show the crosstalk levels in the experimental arrangement to be between -47 and -76 dB depending on the mechanism involved. The multiplexing schemes demonstrate the potential to address at least 192 interferometric sensors through two fibers based on a system with six wavelengths with a phase resolution less than 20 µrad/vHz. For application to sonar arrays, our analysis has shown that hydrophones multiplexed in this type of architecture would achieve ambient acoustic noise-limited pressure resolution with an in-water dynamic range up to 135 dB at frequencies up to 10 kHz. In general, these architectures would find application in systems requiring very large numbers of sensors with a minimum of telemetry cabling required.

© 2001 IEEE

Geoffrey A. Cranch and Philip J. Nash, "Large-Scale Multiplexing of Interferometric Fiber-Optic Sensors Using TDM and DWDM," J. Lightwave Technol. 19, 687- (2001)

Sort:  Journal  |  Reset


  1. P. J. Nash and G. A. Cranch, "Multi-channel optical hydrophone array with time and wavelength division multiplexing", in Proc. 13th Conf. Optical Fiber Sensors , vol. SPIE 3746, Kyongju, Korea,April 12-16 1999, pp. 304-307.
  2. A. R. Davis, C. K. Kirkendall, A. Dandridge and A. D. Kersey, "64 channel all optical deployable acoustic array", in Proc. 12th Conf. Optical Fiber Sensors Tech. Dig., Washington, DC, 1997, pp. 616-619.
  3. A. D. Kersey and A. Dandridge, "Comparative analysis of multiplexing techniques for interferometic fiber sensing", Fiber Optic and Laser Sensors, vol. SPIE 1120, pp. 236-246, 1989.
  4. A. D. Kersey, A. Dandridge and A. B. Tveten, "Time division multiplexing of interferometric fiber sensors using passive phase generated carrier interrogation", Opt. Lett., vol. 12, no. 10, pp. 775-777, 1987.
  5. A. Dandridge, A. B. Tveten, A. D. Kersey and A. M. Yurek, "Multiplexing of interferometric sensors using phase generated carrier techniques", J. Lightwave Technol., vol. LT-5, no. 7, pp. 947-952, 1987.
  6. S. Vohra and A. Dandridge, "A hybrid WDM/TDM reflectometric array", in Proc. 11th Optical Fiber Sensors, Advanced Sensing Photonics, vol. 1, Tokyo, Japan, 1996,2 vol. 712+17,. pp. 534-537.
  7. J. Sæther and K. Bløtekjær, "Optical amplifiers in multiplexed sensor systems-Theoretical prediction of noise performance", in Proc. 11th Opt. Fiber Sensors Conf., Advanced Sensing Photonics, vol. 1, Tokyo, Japan, 1996, pp. 518-521.
  8. J. Sæther and K. Bløtekjær, "Optical amplifiers in time domain multiplexed sensor systems", in Proc. 12th Opt. Fiber Sensors Conf. OSA Tech. Dig. Series , vol. 16, 1997, pp. 586-589.
  9. J. L. Wagener, C. W. Hodgson, M. J. F. Digonnet and H. J. Shaw, "Novel fiber sensor arrays using Erbium-doped fiber amplifiers", J. Lightwave Technol., vol. 15, pp. 1681-1688, Sept. 1997.
  10. C. W. Hodgson, M. J. F. Digonnet and H. J. Shaw, "Large-scale interferometric fiber sensor arrays with multiple optical amplifiers", Opt. Lett., vol. 22, no. 21, pp. 1651-1653, Nov. 1997.
  11. A. D. Kersey, "Demonstration of a hybrid time/wavelength division multiplexed interferometric fiber sensor array", Electron. Lett., vol. 27, no. 7, pp. 554-555, March 28, 1991.
  12. J. Dakin, C. A. Wade and M. L. Henning, "Novel optical fiber hydrophone array using a single laser source and detector", Electron. Lett., vol. 20, pp. 53-54, 1984 .
  13. J. L. Santos, F. Farahi, T. Newson, A. P. Leite and D. A. Jackson, "Frequency multiplexing of remote all-fiber Michelson interferometers with lead insensitivity", J. Lightwave Technol. , vol. 10, pp. 853-863, June 1992.
  14. P. J. Nash, G. A. Cranch, L. Cheng, D. de Bruijn and I. Crowe, "32 element TDM optical hydrophone array", in Proc. Eur. Workshop Optical Fiber Sensors, vol. SPIE 3483, 1998, pp. 238-242.
  15. G. P. Agrawal, 7.2.2 Fiber-Optic Communication Systems, 2nd ed. New York: Wiley, 1997.
  16. I. Baumann, J. Seifert, W. Nowak and M. Sauer, "Compact all-fiber add-drop-multiplexer using fiber Bragg gratings", IEEE Photon. Technol. Lett., vol. 8, pp. 1331-1333, Oct. 1995 .
  17. P. J. Nash and J. Keen, "Design and construction of practical optical fiber hydrophones", Proc. Inst. Acoust., vol. 12, pp. 201-212, 1990.
  18. E. M. O'Brien and C. D. Hussey, "Low-loss fattened fusion splices between different fibers", Electron. Lett., vol. 35, no. 2, pp. 168-169, Jan. 21, 1999.
  19. "Photonetics MICS-16 wavelength demultiplexer specification sheet", Feb. 1998.
  20. M. Sejka, P. Varming, J. Hübner and M. Kristensen, "Distributed feedback Er3+-doped fiber laser", Electron. Lett., vol. 31, no. 17, pp. 1445-1446, Aug. 17, 1995.
  21. J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hübner, M. Kristensen and B. Pálsdóttir, "Polarization control of DFB fiber laser using UV-induced birefringent phase-shift", Electron. Lett., vol. 34, no. 7, pp. 678-679, April 2, 1998.
  22. T. Okoshi, K. Kikuchi and A. Nakayama, "Novel method for high resolution measurement of laser output spectrum", Electron. Lett., vol. 16, no. 16, pp. 630-631, 1980.
  23. Y. Qian, P. Varming, J. H. Povlsen and V. C. Lauridsen, "Dynamic noise responses of DFB fiber lasers in presence of pump power fluctuations", Electron. Lett., vol. 35, no. 4, pp. 299-300, Feb. 18, 1999 .
  24. G. A. Ball, G. Hull-Allen, C. Holton and W. W. Morey, "Low noise single frequency linear fiber laser", Electron. Lett., vol. 29, no. 18, pp. 1623-1625, Sept. 1993.
  25. P. L. Chu, T. W. Whitbread and P. M. Allen, "Trade-off between sensitivity and dynamic range of reflectometric pulsed interferometric fiber sensors", in Proc. 7th Conf. Optical Fiber Sensors, Australia, 1990, pp. 229-232.
  26. R. F. W. Coates, Modern Communication Systems, 2nd ed. New York: Macmillan, 1982, pp. 135-137.
  27. G. A. Cranch, "Internal DERA memorandum", October 1999.
  28. G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. New York: Wiley, 1997, pp. 404-406.
  29. Ultra Precision Ovened Oscillators, West Sussex: U.K.: Total Frequency Control,
  30. G. M. Wenz, "Acoustic ambient noise in the ocean: Spectra and sources", J. Acoust. Soc. Amer., vol. 34, no. 12, pp. 1936-1956, Dec. 1962.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited