## Quasi-3-D Beam-Propagation Method for Modeling Nonlinear Wavelength Conversion

Journal of Lightwave Technology, Vol. 19, Issue 5, pp. 772- (2001)

Acrobat PDF (371 KB)

### Abstract

The two-dimensional (2-D) iterative finite difference beam-propagation method (IFD-BPM) is modified to model the cylindrically symmetric three-dimensional (quasi-3-D) second-order nonlinear wavelength conversion in quasi-phase-matched condition. The study shows that the difference between the 2-D and 3-D schemes is small for the guided waves but large for the nonguided beams. The comparison with experimental results shows that the quasi-3-D IFD-BPM is closer to reality than the 2-D scheme. In addition, simulation using the quasi-3-D IFD-BPM reveals that plane-wave and Gaussian-beam assumptions are not sufficient for estimating the nonlinear conversion and beam propagation in second-order nonlinear devices.

© 2001 IEEE

**Citation**

Shing Mou, Ching-Fuh Lin, and Hsu-Feng Chou, "Quasi-3-D Beam-Propagation Method for Modeling Nonlinear Wavelength Conversion," J. Lightwave Technol. **19**, 772- (2001)

http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-19-5-772

Sort: Journal | Reset

### References

- R. L. Byer, "Quasiphase-matched nonlinear interactions and devices", J. Nonlinear Opt. Phys. Mater., vol. 6, pp. 549-592, 1997.
- L. E. Myers, R. C. Eckardt, M. M. Fejer and R. L. Byer, "Quasiphase-matched optical parametric oscillations in bulk periodically poled LiNbO3", J. Opt. Soc. Amer. B, vol. 12, pp. 2102-2116, 1995.
- C. Baron, H. Cheng and M. C. Gupta, "Domain inversion in LiTaO3 and LiNbO3 by electric field application on chemically patterned crystals", Appl. Phys. Lett. , vol. 68, pp. 481-483, 1996.
- M. L. Bortz and M. M. Fejer, "Annealed proton exchanged LiNb O3 waveguides", Opt. Lett., vol. 6, pp. 1844-1846, 1991.
- D. Eger, M. Oron, M. Kartz and A. Zussman, "Highly efficient blue light generation in KTiOPO4 waveguides", Appl. Phys. Lett. , vol. 64, pp. 3208-3209, 1994.
- M. M. Fejer, G. A. Magel, D. H. Jundt and R. L. Byer, "Quasiphase-matched second harmonic generation: Tuning and tolerances", IEEE J. Quantum Electron., vol. 28, pp. 2631-2654, 1992.
- J. Webjorn, S. Siala, D. K. Nam, R. G. Waarts and R. J. Lang, "Visible laser sources based on frequency doubling in nonlinear waveguides", IEEE J. Quantum Electron., vol. 33, pp. 1673-1685, 1997.
- O. Pfister, J. S. Wells, L. Hollberh, L. Zink, D. A. Van Baak, M. D. Levenson and W. R. Bosnberg, "Continuous-wave frequency tripling and quadrupling by simultaneous tree-wave mixing in periodically poled crystal: Application to a two-step 1.19-10.71µ m frequency bridge", Opt. Lett., vol. 22, pp. 1211 -1213, 1997.
- L. Goldberg, W. K. Burns and R. W. McElhanon, "Wide accceptance bandwidth difference frequency generation in quasiphase-matched LiNbO3 ", Appl. Phys. Lett., vol. 67, no. 20, pp. 2910-2912, 1995 .
- S. Sanders, R. J. Lang, L. E. Myers, M. M. Fejer and R. L. Byer, "Broadly tunable mid-IR radiation source based on difference frequency mixing of high power wavelength-tunable laser diodes in bulk periodically poled LiNbO3", Electron. Lett., vol. 32, pp. 218-219, 1996.
- C. Q. Xu, H. Okayama and T. Kamijoh, "Broadband multichannel wavelength conversions for optical communication systems using quasiphase matched difference frequency generation", J. Appl. Phys., vol. 34, pp. L1543-L1545, 1995.
- M. L. Sundheimer, Ch. Bosshard, E. W. Van Stryland and G. I. Stegeman, "Large nonlinear phase modulation in quasiphase-matched KTP waveguides as a result of cascaded second-order process", Opt. Lett., vol. 18, pp. 1397-1399, 1993.
- C. N. Ironside, J. S. Aitchison and J. M. Arnold, "An all-optical switch employing the cascaded second-order nonlinear effect", IEEE J. Quantum Electron., vol. 29, pp. 2650-2654, 1993.
- M. A. Arbore, O. Marco and M. M. Fejer, "Pulse compression during second-harmonic generation in aperiodic quasiphase-matching gratings", Opt. Lett., vol. 22, pp. 865-867, 1997.
- J. D. McMullen, "Optical parametric interactions in isotropic materials using a phase-corrected stack of nonlinear dielectric plates", J. Appl. Phys., vol. 46, pp. 3076-3081, 1975.
- C. Q. Xu, H. Okayama and M. Kawahara, "Optical frequency conversions in nonlinear medium with periodically medulated linear and nonlinear optical parameters", IEEE J. Quantum Electron., vol. 31, pp. 981-987, 1995.
- V. Mahalakshmi, M. R. Shenoy and K. Thyagarajan, "Evolution of the intensity profile of Cerenkov second-harmonic radiation with propagation distance in planar waveguides", IEEE J. Quantum Electron., vol. 32, pp. 137-144, 1996.
- M. Vaya, K. Thyagarajan and A. Kumar, "Leaky-waveguide configuration for quasiphase-matched second-harmonic generation", J. Opt. Soc. Amer. B, vol. 15, pp. 1322-1328, 1998.
- H. J. W. M. Hoekstra, "On beam propagation methods for modeling in integrated optics", Opt. Quantum Electron., vol. 29, pp. 157-171, 1997.
- B. Hermansson, D. Yevick and L. Thylen, "A propagation beam method analysis of nonlinear effects in optical waveguides", Opt. Quantum Electron., vol. 16, pp. 525-534, 1984.
- K. Hayata and M. Koshiba, "Numerical study of guide-wave sum-frequency generation through second-order nonlinear parametric processes", J. Opt. Soc. Amer. B, vol. 8, pp. 449-458, 1991.
- K. Hayata and M. Koshiba, "Three-dimentional simulation of guided-wave second-harmonic generation in the form of coherent Cerenkov radiation", Opt. Lett., vol. 16, pp. 1563-1565, 1991.
- F. A. Katsriku, B. B. A. Rahman and K. T. V. Grattan, "Numerical modeling of second harmonic generation in optical waveguides using the finite element method", IEEE J. Quantum Electron., vol. 33, pp. 1727-1733, 1997.
- P. S. Weitzman and U. Osterberg, "A modified beam propagation method to model second harmonic generation in optical fibers", IEEE J. Quantum Electron., vol. 29, pp. 1437-1443, 1993.
- H. M. Masoudi and J. M. Arnold, "Modeling second-order nonlinear effects in optical waveguides using a parallel-processing beam propagation method", IEEE J. Quantum Electron., vol. 31, pp. 2107 -2113, 1995.
- H. M. Masoudi and J. M. Arnold, "Parallel beam propagation methed for the analysis of second harmonic generation", IEEE Photon. Technol. Lett., vol. 7, pp. 400-402, 1995.
- G. J. M. Krijnen, W. Torruellas, G. I. Stegeman, H. J. W. M. Heoskstra and P. V. Lambeck, "Optimization of second harmonic generation and nonlinear phase-shifts in the Cerenkov regime", IEEE. J. Quantum Electron., vol. 32, pp. 729-738, 1996.
- H. J. W. M. Heoskstra, O. Noordman, G. J. M. Krijnen, R. K. Varshney and E. Henselmans, "Beam-propagation method for second-harmonic generation in waveguides with birefringent materials", J. Opt. Soc Amer. B, vol. 14, pp. 1823-1830, 1997.
- H.-F. Chou, C.-F. Lin and G.-C. Wang, "An iterative finite difference beam propagation method for modeling second-order nonlinear effects in optical waveguides", J. Lightwave Technol., vol. 16, pp. 1686-1693, 1998.
- H.-F. Chou, C.-F. Lin and S. Mou, "Comparisons of finite difference beam propagarion methods for modeling second-order nonlinear effects", J. Lightwave Technol. , vol. 17, pp. 1481-1486, 1998.
- Y. Chung and N. Dagli, "An assessment of finite difference beam propagation method", IEEE J. Quantum Electron., vol. 26, pp. 1335 -1339, 1990.
- H.-F. Chou, "A study of quasiphase-matched second-order nonlinear effects", Masters thesis, National Taiwan University, 1998.
- W. Koechner, Solid-State Laser Engineering, New York: Springer-Verlag, 1976.
- W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing ,: U.K.: Cambridge Univ. Press, 1992.
- J. W. Thomas, Numerical Partial Differential Equations: Finete Difference Methods , New York: Springer-Verlag, 1995 .
- S. Nakamura, Applied Numerical Methods with Software, Englewood Cliffs, NJ: Prentice-Hall, 1991.
- D. G. Zill and M. R. Cullen, Advanced Engineering Mathematics,: PWS, 1992.

## Cited By |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.