OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 21, Iss. 10 — Oct. 1, 2003
  • pp: 2247–

Study of Raman Amplification Properties in Triangular Photonic Crystal Fibers

M. Fuochi, F. Poli, S. Selleri, A. Cucinotta, and L. Vincetti

Journal of Lightwave Technology, Vol. 21, Issue 10, pp. 2247- (2003)

View Full Text Article

Acrobat PDF (364 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In this paper, the Raman properties of triangular photonic crystal fibers (PCFs) are analyzed in order to design a fiber for Raman amplification with enhanced performances. By casting the Raman intensity propagation equations,the Raman effective area and the Raman gain coefficient are introduced-two meaningful parameters that take into account the overlap between the pump and signal profiles. The behavior of these two parameters is examined in silica PCFs as a function of the geometrical characteristics of the triangular lattice. The numerical results show that a proper design of the hole diameter and the spacing between air holes can minimize the Raman effective area and maximize the Raman gain coefficient. The paper then focuses on the PCFs with germania-doped core. It is found that, for a given PCF cross section and dimension of the doped region, the Raman gain coefficient increases linearly with the germania concentration. Moreover, by enlarging the doped region, it is discovered that a PCF with a germania-doped area internally tangent to the first ring of air holes has a maximum Raman gain coefficient. Finally, the calculated values of the Raman gain coefficient are compared with those of other highly nonlinear fibers presented in literature, showing that a well-designed triangular PCF can significatively improve the Raman gain performances.

© 2003 IEEE

M. Fuochi, F. Poli, S. Selleri, A. Cucinotta, and L. Vincetti, "Study of Raman Amplification Properties in Triangular Photonic Crystal Fibers," J. Lightwave Technol. 21, 2247- (2003)

Sort:  Journal  |  Reset


  1. Y. Emori, K. Tanaka and S. Namiki, "100 nm bandwidth flat-gain Raman amplifiers pumped and gain-equalized by 12-wavelength-channel WDM laser diode unit", Electron. Lett., vol. 35, pp. 1355-1356, Aug. 1999.
  2. H. Kidorf, K. Rottwitt, M. Nissov, M. Ma and E. Rabarijaona, "Pump interactions in a 100-nm bandwidth Raman amplifier", IEEE Photon. Technol. Lett., vol. 11, pp. 530-532, May 1999.
  3. P. B. Hansen, L. Eskildsen, S. G. Grubb, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. Demarco, R. Pedrazzani and D. J. Digiovanni, "Capacity upgrades of transmission systems by Raman amplification", IEEE Photon. Technol. Lett., vol. 9, pp. 262-264, Feb. 1997.
  4. C. Fludger, A. Maroney, N. Jolley and R. Mears, "An analysis of the improvements in OSNR from distributed Raman amplifiers using modern transmission fibers", in Proc. OFC 2000, Mar. 2000, pp. 100-102.
  5. Z. Yusoff, J. H. Lee, W. Belardi, T. M. Monro, P. C. Teh and D. J. Richardson, "Raman effects in a highly nonlinear holey fiber: Amplification and modulation", Opt. Lett., vol. 27, pp. 424-426, Mar. 2002.
  6. "Fiber cuts Raman threshold", Opt. Laser Eur., vol. 100, p. 14, Nov. 2002.
  7. A. Ortigosa-Blanch, J. C. Knight and P. S. J.P. St. J. Russell, "Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers", Opt. Lett. , vol. 27, pp. 424-426, Mar. 2002.
  8. J. E. Sharping and P. Kumar, "Nonlinear optics in photonic crystal fibers,"in Nonlinear optics in photonic crystal fibers , Tutorial ed. Evanston, IL: Northwestern Univ., Sept. 2002.
  9. J. Broeng, D. Mogilevstev, S. E. Barkou and A. Bjarklev, "Photonic crystal fibers: A new class of optical waveguides", Optic. Fiber Technol., vol. 5, pp. 305-330, 1999.
  10. N. A.Niels Asger Mortensen, "Effective area of photonic crystal fibers", Optics Express , vol. 10, pp. 341-348, Apr. 2002.
  11. A. Cucinotta, S. Selleri, L. Vincetti and M. Zoboli, "Perturbation analysis of dispersion properties in photonic crystal fibers through the finite element method", J. Lightwave Technol., vol. 20, pp. 1433-1442, Aug. 2002.
  12. A. Cucinotta, F. Poli, S. Selleri, L. Vincetti and M. Zoboli, "Amplification properties of Er3+ -doped photonic crystal fibers", J. Lightwave Technol., vol. 21, pp. 782-788, Mar. 2003.
  13. D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta and S. Selleri, "Leakage properties of photonic crystal fibers", Optics Express, vol. 10, pp. 1314-1319, Nov. 2002 .
  14. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. New York: Academic, 1995 .
  15. J. Bromage, K. Rottwitt and M. E. Lines, "A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profile", IEEE Photon. Technol. Lett., vol. 14, pp. 24 -26, Jan. 2002.
  16. A. Cucinotta, S. Selleri, L. Vincetti and M. Zoboli, "Holey fiber analysis through the finite-element method", IEEE Photon. Technol. Lett., vol. 14, pp. 1530-1532, Nov 2002.
  17. A. Ferrando, E. Silvestre, P. Andrés, J. J. Miret and M. V. Andrés, "Designing the properties of dispersion-flattened photonic crystal fibers", Optics Express, vol. 9, pp. 687-697, Dec. 2001.
  18. P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee and D. J. Richardson, "2R-regenerative all-optical switch based on a highly nonlinear holey fiber", Opt. Lett., vol. 26, pp. 1233-1235, Aug. 2001.
  19. J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro and D. J. Richardson, "Investigation of Brillouin effects in small-core holey optical fiber: lasing and scattering", Opt. Lett., vol. 27, pp. 927-929, June 2002.
  20. F. L. Galeener, J. C. Mikkelsen, R. H. Geils and W. H. Mosby, "The relative Raman cross sections of vitreous SiO2, GeO2, B2O3 and P2O5", Appl. Phys. Lett., vol. 32, pp. 34-36, Jan. 1978.
  21. B. J. Ainslie, S. T. Davey, W. J. M. Rothwell, B. Wakefield and D. L. Williams, "Optical gain spectrum of GeO 2-SiO2 Raman fiber amplifiers", Optoelectronics, IEE Proc. J., vol. 136, pp. 301-306, Dec. 1989 .
  22. BlazePhotonics Ltd., "Photonic Crystal Fibers", BlazePhotonics Ltd., , Tutorial, University of Bath, Claverton Down, Bath,
  23. Sumitomo Electric "Highly Non-Liner Fiber for Discrete Raman Amplification Amplifier (Data Sheet)", Sumitomo Electric, Sumitomo Electric Lightwave Corp., Research Triangle Park, NC,
  24. K. Tajina, K. Nakajima, K. Kurokawa, N. Yoshizawa and M. Ohashi, "Low-loss photonic crystal fibers", in Proc. OFC 2002, Mar. 2002, pp. 523-524.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited