OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 21, Iss. 10 — Oct. 1, 2003
  • pp: 2255–

Photochromic Liquid-Core Fibers With Nonlinear Input-Output Characteristics

Mitsunori Saito, Akihiko Honda, and Kingo Uchida

Journal of Lightwave Technology, Vol. 21, Issue 10, pp. 2255- (2003)

View Full Text Article

Acrobat PDF (257 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Photochromic liquid-core fibers were fabricated by using benzene or 2-propanol solution of spirobenzopyran. The fiber element consisting of a benzene-solution core and a silica-glass cladding exhibited variable transmittance that was controlled by ultraviolet irradiation. When a visible laser beam (532-nm wavelength) was used as input signal, output signal power increased nonlinearly with input power due to reversed photochromism. This nonlinear input-output characteristic was observed without ultraviolet light,when a fiber was constructed with 2-propanol solution and a polymer-coated glass tube. These experimental results agreed with the theoretical prediction that was based on a simple photochromic fiber model.

© 2003 IEEE

Mitsunori Saito, Akihiko Honda, and Kingo Uchida, "Photochromic Liquid-Core Fibers With Nonlinear Input-Output Characteristics," J. Lightwave Technol. 21, 2255- (2003)

Sort:  Journal  |  Reset


  1. J. Stone, "Optical transmission loss in liquid-core hollow fibers", IEEE J. Quantum Electron. , vol. QE-8, pp. 386-388, 1972.
  2. D. N. Payne and W. A. Gambling, "New low-loss liquid-core fiber waveguide", Electron. Lett., vol. 8, pp. 374-376, 1972.
  3. G. Rosman, "Variation of pulse delay with launch angle in a liquid-filled fiber", Electron. Lett., vol. 8, pp. 455-456, 1972.
  4. G. D. Ogilvie, R. J. Esdaile and G. P. Kidd, "Transmission loss of tetrachloroethylene-filled liquid-core-fiber light guide", Electron. Lett., vol. 8, pp. 533-534, 1972.
  5. A. K. Majumdar, E. D. Hinkley and R. T. Menzies, "Infrared transmission at the 3.39 µ m Helium-Neon laser wavelength in liquid-core quartz fibers", IEEE J. Quantum Electron., vol. QE-15, pp. 408-410, 1979.
  6. J. C. Schaefer and I. Chabay, "Generation of enhanced coherent anti-stokes Raman spectroscopy signals in liquid-filled waveguides", Opt. Lett., vol. 4, pp. 227-229, 1979.
  7. K. Fuwa, W. Lei and K. Fujiwara, "Colorimetry with a total-reflection long capillary cell", Anal. Chem., vol. 56, pp. 1640 -1644, 1984.
  8. G. S. He, M. Casstevens, R. Burzynski and X. Li, "Broadband, multiwavelength stimulated-emission source based on stimulated Kerr and Raman scattering in a liquid-core fiber system", Appl. Opt., vol. 34, pp. 444-454, 1995.
  9. G. S. He, M. Yoshida, J. D. Bhawalkar and P. N. Prasad, "Two-photon resonance-enhanced refractive-index change and self-focusing in a dye-solution-filled hollow fiber system", Appl. Opt., vol. 36, pp. 1155-1163, 1997.
  10. S. Mujumdar and H. Ramachandran, "Use of a graded gain random amplifier as an optical diode", Opt. Lett., vol. 26, pp. 929-931, 2001.
  11. H. Dürr, "Perspectives in photochromism: A novel system based on the 1, 5-electrocyclization of heteroanalogous pentadienyl anions", Angew. Chem. Int. Ed. Engl., vol. 28, pp. 413-431, 1989.
  12. D. Levy, "Photochromic sol-gel materials", Chem. Mater., vol. 9, pp. 2666-2670, 1997.
  13. M. Kryszewski, B. Nadolski, A. M. North and R. A. Pethrick, "Kinetic matrix effects (response and density distribution functions): Ring closure", J. Chem. Soc. Faraday Trans. 2, vol. 76, pp. 351-368, 1980.
  14. K. Horie, M. Tsukamoto and I. Mita, "Photochromic reaction of spiropyran in polycarbonate film", Eur. Polymer J., vol. 21, pp. 805-810, 1985.
  15. J. G. Victor and J. M. Torkelson, "On measuring the distribution of local free volume in glassy polymers by photochromic and fluorescence techniques", Macromolecules, vol. 20, pp. 2241-2250, 1987.
  16. D. Levy and D. Avnir, "Effects of the changes in the properties of the silica cage along the gel/xerogel transition on the photochromic behavior of trapped spiropyrans", J. Phys. Chem., vol. 92, pp. 4734-4738, 1988.
  17. D. Preston, J.-C. Pouxviel, T. Novinson, W. Kaska, B. Dunn and J. I. Zink, "Photochromism of spiropyrans in aluminosilicate gels", J. Phys. Chem., vol. 94, pp. 4167-4172, 1990.
  18. A. Tork, F. Boudreault, M. Roberge, A. M. Ritcey, R. A. Lessard and T. V. Galstian, "Photochromic behavior of spiropyran in polymer matrices", Appl. Opt., vol. 40, no. 8, pp. 1180-1186, 2001.
  19. R. Cush, C. Trundle, C. J. G. Kirkby and I. Bennion, "Bistable optical switching and logic elements in photochromic fulgides with single-wavelength illumination", Electron. Lett., vol. 23, pp. 419-421, 1987.
  20. J. R. Kulisch, H. Franke, R. Irmscher and Ch. Buchal, "Opto-optical switching in ion-implanted poly(methyl methacrylate)-waveguides", J. Appl. Phys., vol. 71, pp. 3123-3126, 1992.
  21. A. Yacoubian and T. M. Aye, "Enhanced optical modulation using azo-dye polymers", Appl. Opt., vol. 32, pp. 3073-3080, 1993.
  22. T. Okamoto, T. Kamiyama and I. Yamaguchi, "All-optical spatial light modulator with surface plasmon resonance", Opt. Lett., vol. 18, pp. 1570 -1572, 1993.
  23. N. Tanio and M. Irie, "Photooptical switching of polymer film waveguide containing photochromic diarylethenes", Jpn. J. Appl. Phys., vol. 33, pp. 1550-1553, 1994.
  24. K. Sasaki and T. Nagamura, "Ultrafast wide range all-optical switch using complex refractive-index changes in a composite film of silver and polymer containing photochromic dye", J. Appl. Phys., vol. 83, pp. 2894-2900, 1998.
  25. J. Biteau, F. Chaput, K. Lahlil, J.-P. Boilot, G. M. Tsivgoulis, J.-M. Lehn, B. Darracq, C. Marois and Y. Lévy, "Large and stable refractive index change in photochromic hybrid materials", Chem. Mater., vol. 10, pp. 1945-1950, 1998.
  26. S. Lecomte, U. Gubler, M. Jäger, Ch. Bosshard, G. Montemezzani, P. Günter, L. Gobbi and F. Diederich, "Reversible optical structuring of polymer waveguides doped with photochromic molecules", Appl. Phys. Lett., vol. 77, pp. 921-923, 2000.
  27. E. Ando, J. Hibino, T. Hashida and K. Morimoto, "Controls of photochromic reactions in spiropyran Langmuir-Blodgett films", Thin Solid Films, vol. 160, pp. 279-286, 1988.
  28. D. A. Parthenopoulos and P. M. Rentzepis, "Three-dimensional optical storage memory", Science, vol. 245, pp. 843-845, 1989.
  29. D. Levy and F. D. Monte, "Photochromic doped sol-gel materials for fiber-optic devices", J. Sol-Gel Sci. Technol., vol. 8, pp. 931-935, 1997.
  30. R. Nakao, N. Ueda, Y. Abe, T. Horii and H. Inoue, "Polymeric siloxanes with a substituent and the spirobenzopyran moiety: Effect of polar substituent on the photochromic properties", Polym. Adv. Technol., vol. 7, pp. 863-866, 1996.
  31. D. Levy, S. Einhorn and D. Avnir, "Applications of the sol-gel process for the preparation of photochromic information-recording materials: Sysnthesis, properties, mechanisms", J. Non-Cryst. Solids, vol. 113, pp. 137-145, 1989.
  32. G. H. Brown, Ed. Photochromism, New York: Wiley, 1971, ch. III.
  33. R. D. Waterbury, W. Yao and R. H. Byrne, "Long pathlength absorbance spectroscopy: Trace analysis of Fe(II) using a 4.5 m liquid core waveguide", Anal. Chim. Acta, vol. 357, pp. 99-102, 1997.
  34. M. Saito, T. Gojo, Y. Kato and M. Miyagi, "Optical constants of polymer coatings in the infrared", Infrared Phys. Technol., vol. 36, pp. 1125-1129, 1995.
  35. M. Irie, "Photochromic diarylethenes for photonic devices", Pure Appl. Chem., vol. 68, pp. 1367-1371, 1996.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited