OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 21, Iss. 10 — Oct. 1, 2003
  • pp: 2322–

Adaptive Minimum MSE Controlled PLC Optical Equalizer for Chromatic Dispersion Compensation

M. Secondini, E. Forestieri, and G. Prati

Journal of Lightwave Technology, Vol. 21, Issue 10, pp. 2322- (2003)

View Full Text Article

Acrobat PDF (339 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


With the advent of very high-bit-rate optical communication systems (40 Gb/s and beyond) and the progressive transformation of the optical layer in a real networking layer, a channel-by-channel adaptive optical equalization will be needed. An adaptive optical equalizer for chromatic dispersion compensation,based on planar lightwave circuit (PLC) technology and controlled by a minimum mean square error (MSE) strategy, is proposed here. It is shown in a rigorous manner how the PLC parameters are to be adjusted and that the control algorithm is effective even with a few stages PLC equalizer, performing better than other nonadaptive control techniques. An analysis of the dynamic behavior of the equalizer shows that, in a realistic time-varying scenario, it can easily adapt to slow channel variations and is able to quickly restore a minimum MSE condition after an abrupt chromatic dispersion variation.

© 2003 IEEE

M. Secondini, E. Forestieri, and G. Prati, "Adaptive Minimum MSE Controlled PLC Optical Equalizer for Chromatic Dispersion Compensation," J. Lightwave Technol. 21, 2322- (2003)

Sort:  Journal  |  Reset


  1. G. P. Agrawal, Fiber-Optic Communication Systems , New York: Wiley, 1997.
  2. F. Ouellette, J.-F. Cliche and S. Gagnon, "All-fiber devices for chromatic dispersion compensation based on chirped distributed resonant coupling", J. Lightwave Technol., vol. 12, pp. 1728-1738, Oct. 1994 .
  3. N. M. Litchinister and D. P. Patterson, "Analysis of fiber bragg gratings for dispersion compensation in reflective and transmissive geometries", J. Lightwave Technol., vol. 15, pp. 1323-1328, Aug. 1997 .
  4. S. Kuwano, K. Yonenaga and K. Iwashita, "10 Gbit/s repetearless transmission experiment of optical duobinary modulated signal", Electron. Lett., vol. 31, no. 16, pp. 1359-1361, 1995.
  5. K. Yonenaga and S. Kuwano, "Dispersion-tolerant optical transmission system using duobinary transmitter and binary receiver", J. Lightwave Technol. , vol. 15, pp. 1530-1537, Aug. 1997.
  6. E. Forestieri and G. Prati, "Novel optical line codes tolerant to fiber chromatic dispersion", J. Lightwave Technol., vol. 19, pp. 1675-1684, Nov. 2001.
  7. A. Banerjee, J. Drake, J. P. Lang, B. Turner, K. K. ompella and Y. Rekhter, "Generalized multiprotocol label switching: An overview of routing and management enhancements", IEEE Commun. Mag. , vol. 39, pp. 144-150, Jan. 2001.
  8. R. Ramaswami, "Optical fiber communication: From transmission to networking", IEEE Commun. Mag., pp. 138-147, May 2002.
  9. M. Secondini, E. Forestieri and G. Prati, "Performance of mse configured plc optical equalizer for chromatic dispersion compensation", IEEE Photon. Technol. Lett., vol. 15, pp. 248-250, Feb. 2003.
  10. M. Bohn, G. Mohs, C. Scheerer, C. Glingener, C. Wree and W. Rosenkranz, "An adaptive optical equalizer concept for single channel distortion compensation", in Proc. ECOC'01, vol. 1, 2001, pp. 6-7.
  11. A. Himeno, K. Kato and T. Miya, "Silica-based planar lightwave circuits", J. Select. Quantum Electron., vol. 4, pp. 913-924, Nov. 1998.
  12. K. Takiguci, K. Okamoto and K. Moriwaki, "Dispersion compensation using a planar lightwave circuit optical equalizer", IEEE Photon. Technol. Lett., vol. 6, pp. 561 -564, Apr. 1994.
  13. J. H. Winters, "Equalization in coherent lightwave systems using a fractionally spaced equalizer", J. Lightwave Technol., vol. 8, pp. 1487-1491, Oct. 1990 .
  14. K. Jinguji, "Synthesis of coherent two-port lattice-form optical delay-line circuit", J. Lightwave Technol., vol. 13, pp. 73-82, Jan. 1995.
  15. S. Benedetto, E. Biglieri and V. Castellani, Digital Transmission Theory, London: U.K.: Prentice-Hall, 1987.
  16. S. W. Golomb, Shift Register Sequences, San Francisco, CA: Holden-Day, 1967.
  17. D. Marquardt, "An algorithm for least squares estimation of non linear parameters", J. Soc. Ind. Appl. Math., 1963.
  18. P. J. M. Van Laarhoven and E. H. L. Aarts, Simulated Annealing:Theory and Applications, Dordrecht: Holland: Reidel, 1987.
  19. E. Forestieri, "Evaluating the error probability in lightwave systems with chromatic dispersion, arbitrary pulse shape and pre-and postdetection filtering", J. Lightwave Technol., vol. 18, pp. 1493-1503, Nov. 2000 .
  20. A. F. Elrefaie, R. E. Wagner, D. A. Atlas and D. G. Daut, "Chromatic dispersion limitations in coherent lightwave transmission systems", J. Lightwave Technol. , vol. 6, pp. 704-709, May 1988.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited