OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 21, Iss. 10 — Oct. 1, 2003
  • pp: 2368–

Index Contrast Scaling for Optical Amplifiers

Sajan Saini, Jurgen Michel, and Lionel C. Kimerling

Journal of Lightwave Technology, Vol. 21, Issue 10, pp. 2368- (2003)

View Full Text Article

Acrobat PDF (452 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A scaling methodology for optically pumped waveguide amplifiers is presented as a function of their core-cladding index contrast. Increasing index contrast results in two crucial advantages: 1) an increase in gain efficiency and 2) a decrease in the areal footprint of a planar structure. Increasing index contrast is observed to have no effect on the output noise figure. A figure of merit summarizing these advantages demonstrates the powerful role of index contrast as an enabler for improving planar amplifier performance. Design rules are presented in the form of performance maps, allowing waveguide designers to optimize amplifier length and footprint. Using the Er-doped waveguide amplifier as a case study, we design an optical amplifier with >3-dB/cm gain within a 300 × 300-µm2 area, powered by a single 1-mW pump source. This work represents a design rule approach for making a scalable microphotonic optical amplifier.

© 2003 IEEE

Sajan Saini, Jurgen Michel, and Lionel C. Kimerling, "Index Contrast Scaling for Optical Amplifiers," J. Lightwave Technol. 21, 2368- (2003)

Sort:  Journal  |  Reset


  1. E. Desurvire, Erbium-Doped Fiber Amplifiers:Principles and Applications, New York: Wiley, 1994.
  2. P. C. Becker, N. A. Olsson and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology, New York: Academic, 1999, ch. 6, pp. 66-75, 184, 161-197.
  3. L. C. Kimerling, "Silicon microphotonics", Appl. Surf. Sci., vol. 159, 160, pp. 8-13, 2000.
  4. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin and F. Cerrina, "Fabrication of ultralow-loss Si/SiO/sub 2/waveguides by roughness reduction", Opt. Lett. , vol. 26, no. 23, pp. 1888-1890, 2002.
  5. V. R. Almeida, R. Panepucci and M. Lipson, "Compact mode conversion for highly-confined waveguides", in Integrated Photonics Research, OSA Tech. Dig., Washington, DC, 2003, pp. 230- 233.
  6. A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler and J. M. Poate, "Optical doping of waveguide materials by MeV Er implantation", J. Appl. Phys., vol. 70, no. 7, pp. 3778-3784, 1991.
  7. M. Dejneka and B. Samson, "Rare-earth-doped fibers for telecommunications applications", MRS Bull. , vol. 24, no. 9, pp. 39-45, 1999.
  8. M. Digonnet, Ed. Selected Papers on Rare-Earth-Doped Fiber Laser Sources and Amplifiers, New York: Marcel Dekker, 2001.
  9. K. Hattori, T. Kitagawa, M. Oguma, Y. Ohmori and M. Horiguchi, "Erbium-doped silica-based waveguide amplifier integrated with a 980/1530 nm WDM coupler", Electron. Lett., vol. 30, p. 856, 1994.
  10. G. Nykolak, M. Haner, P. C. Becker, J. Shmulovich and Y. H. Wong, "Systems evaluation of an Er3+ -doped planar waveguide amplifier", IEEE Photon. Technol. Lett., vol. 5, p. 1185, Oct. 1993.
  11. A. V. Chelnokov, J.-M. Lourtioz, Ph. Boucard, H. Bernas, J. Chaumont and T. Plowman, "Deep erbium-ytterbium implantation codoping of low-loss silicon oxynitride waveguides", Electron. Lett., vol. 31, no. 8, pp. 636-638, 1995.
  12. M. Krishnaswamy, J. N. McMullin, B. P. Keyworth and J. S. Hayden, "Optical properties of strip-loaded Er-doped waveguides", Opt. Mater., vol. 6, pp. 287 -292, 1996.
  13. Y. C. Yan, A. J. Faber, H. de Waal, A. Polman and P. G. Kik, "Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 µ m", Appl. Phys. Lett., vol. 71, no. 20, pp. 2922-2944, 1997 .
  14. P. G. Kik and A. Polman, "Gain limiting processes in Er-doped Si nanocrystal waveguides in SiO2 ", J. Appl. Phys., vol. 91, no. 1, pp. 534-536, 2002.
  15. D. M. Gill, G. M. Ford, B. A. Block, S. Kim, B. W. Wessels and S. T. Ho, "Guided wave absorption and fluorescence in epitaxial Er:BaTiO3", Thin Solid Films, vol. 365, pp. 126-128, 2000.
  16. S. F. Wong, E. Y. B. Pun and P. S. Chung, "Er3+ -Yb 3+ codoped phosphate glass waveguide amplifier using Ag+ -Li+ ion exchange", IEEE Photon. Technol. Lett., vol. 14, no. 1, pp. 80-82, Jan. 2002.
  17. G. N. van den Hoven, R. J. I. M. Koper, A. Polman, C. van Dam, J. W. M. van Uffelen and M. K. Smit, "Net optical gain at 1.53 mu in Er-doped Al2O3 waveguides on silicon", Appl. Phys. Lett., vol. 68, no. 14, pp. 1886-1888, 1996.
  18. D. Barbier and R. L. Hyde, "Erbium-doped glass waveguide devices," Integrated Optical Circuits and Components:Design and Applications, E. J. Murphy, Ed. New York: Marcel Dekker, 1999.
  19. C. Strohhofer and A. Polman, "Relationship between gain and Yb3+ concentration in Er3+-Yb3+ doped waveguide amplifiers", J. Appl. Phys., vol. 90, no. 9, pp. 4314-4320, 2001.
  20. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, New York: Wiley, 1991, pp. 253, 488-489.
  21. J. Hecht, "The evolution of optical amplifiers", Optics Phot. News , vol. 13, no. 8, pp. 36-39, 2002.
  22. K. K. Lee, D. R. Lim, H. Luan, A. Agarwal, J. Foresi and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO/sub 2/waveguide: Experiments and model", Appl. Phys. Lett. , vol. 77, no. 11, pp. 1617-1619, 2000.
  23. Corning LEAF Fiber Website, Product Catalog. [Online]. Available: http://www.corning.com/opticalfiber/products_services/product_catalog/leaf
  24. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, New York: Wiley, 1991, p. 277.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited