OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 21, Iss. 10 — Oct. 1, 2003
  • pp: 2382–

Substrate-Embedded and Flip-Chip-Bonded Photodetector Polymer-Based Optical Interconnects: Analysis, Design, and Performance

Elias N. Glytsis, Nan M. Jokerst, Ricardo A. Villalaz, Sang-Yeon Cho, Shun-Der Wu, Zhaoran Huang, Martin A. Brooke, and Thomas K. Gaylord

Journal of Lightwave Technology, Vol. 21, Issue 10, pp. 2382- (2003)

View Full Text Article

Acrobat PDF (573 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The performance of three optoelectronic structures incorporating substrate-embedded InP-based inverted metal-semiconductor-metal photodetectors and/or volume holographic gratings are analyzed and compared at the primary optical communication wavelengths. These structures, in conjunction with optical-quality polymer layers, can be easily integrated into silicon microelectronic substrates for the purpose of implementing potentially low-cost high-data-rate chip-level or substrate-level optical interconnects. The structures are as follows: a) an evanescent-coupling architecture with a substrate-embedded photodetector, b) a volume-holographic-grating coupler architecture with a substrate-embedded photodetector, and c) a volume-holographic-grating coupler architecture with a flip-chip-bonded photodetector. It is found that the primary characteristic of the evanescent coupling architectures is the efficient performance for both TE and TM polarizations with the disadvantage of exponentially decreasing efficiency with increasing separation between the waveguide film layer and the photodetector layer. On the other hand, the primary characteristic of the volume holographic grating architectures is the possibility of wavelength and polarization selectivity and their independence on the separation between the photodetector layer and the waveguide. Comparison of the analysis with experimental results is also included in the case of the evanescent coupling into a substrate-embedded photodetector.

© 2003 IEEE

Elias N. Glytsis, Nan M. Jokerst, Ricardo A. Villalaz, Sang-Yeon Cho, Shun-Der Wu, Zhaoran Huang, Martin A. Brooke, and Thomas K. Gaylord, "Substrate-Embedded and Flip-Chip-Bonded Photodetector Polymer-Based Optical Interconnects: Analysis, Design, and Performance," J. Lightwave Technol. 21, 2382- (2003)

Sort:  Journal  |  Reset


  1. E. D. Kyriakis-Bitzaros, N. Haralabidis, M. Lagadas, A. Georgakilas, Y. Moisiadis and G. Halkias, "Realistic end-to-end simulation of the optoelectronic links and comparison with the electrical interconnections for system-on-chip applications", J. Lightwave Technol., vol. 19, pp. 1532-1542, Oct. 2001.
  2. W. Ryu, J. Lee, H. Kim, S. Ahn, N. Kim, B. Choi, D. Kam and J. Kim, "RF interconnect for multi-Gbit/s board-level clock distribution", IEEE Trans. Adv. Packag., vol. 23, pp. 398-407, Aug. 2000.
  3. D. A. B. Miller, "Rationale and challenges for optical interconnects to electronic chips", Proc. IEEE, vol. 88, pp. 728-749, June 2000.
  4. S. K. Tewksbury and L. A. Hornak, "Optical clock distribution in electronic systems", J. VLSI Signal Process. S, vol. 16, pp. 225-246, June-July 1997.
  5. M. Rassaian and M. W. Beranek, "Quantitative characterization of 96.5Sn3.5Ag and 80Au20Sn optical fiber solder bond joints on silicon micro-optical bench substrates", IEEE Trans. Adv. Packag., vol. 22, pp. 86-93, Feb. 1999.
  6. S. J. Walker and J. Jahns, "Optical clock distribution using integrated free-space optics", Opt. Commun., vol. 90, pp. 359 -371, June 15, 1992.
  7. P. J. Delfyett, D. H. Hartman and S. Z. Ahmad, "Optical clock distribution using a mode-locked semiconductor laser-diode system", J. Lightwave Technol., vol. 9, pp. 1646-1649, Dec. 1991.
  8. Y. Liu, L. Lin, C. Choi, B. Bihari and R. T. Chen, "Optoelectronic integration of polymer waveguide array and metal-semiconductor-metal photodetector through micromirror couplers", IEEE Photon. Technol. Lett., vol. 13, pp. 355 -357, Apr. 2001.
  9. R. T. Chen, L. Lin, C. C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow and Y. S. Liu, "Fully embedded board-level guided-wave optoelectronic interconnects", Proc. IEEE, vol. 88, pp. 780-793, June 2000.
  10. A. W. Snyder and J. D. Love, Optical Waveguide Theory, New York: Chapman and Hall, 1996, ch. 24-26.
  11. T. Tamir and A. A. Oliner, "Guided complex waves. Part 2: relation to radiation patterns", Proc. Inst. Elect. Eng., vol. 110, pp. 325-334, Feb. 1963.
  12. E. Anemogiannis and E. N. Glytsis, "Multilayer waveguides: efficient numerical analysis of general structures", J. Lightwave Technol., vol. 10, pp. 1344-1351, Oct. 1992.
  13. R. E. Smith, S. N. Houde-Walter and G. W. Forbes, "Numerical determination of planar waveguide modes using the analyticity of the dispersion relation", Opt. Lett. , vol. 16, pp. 1316-1318, Sept. 1, 1991.
  14. L. M. Delves and J. N. Lyness, "A numerical method for locating the zeros of an analytic function", Math. Comp., vol. 21, pp. 543 -560, 1967.
  15. M. N. O. Sadiku, Numerical Techniques in Electromagnetics, Boca Raton, FL: CRC Press, 1992, ch. 3.
  16. W.-C. Liu and M. W. Kowarz, "Vector diffraction from subwavelength optical disk structures: two-dimensional modeling of near-field profiles, far-field intensities and detector signals from DVD", Appl. Opt., vol. 38, pp. 3787-3797, Oct. 10, 1999.
  17. S.-D. Wu and E. N. Glytsis, "Finite-number-of-periods holographic gratings with finite-width incident beams: analysis using the finite-difference frequency-domain method", J. Opt. Soc. Amer. A, vol. 19, pp. 2018-2029, Oct. 2002 .
  18. J. P. Bérenger, "Improved PML for the FDTD solution of wave-structure interaction problems", IEEE Trans. Antennas Propagat., vol. 45, pp. 466-473, Mar. 1997.
  19. S. T. Peng, T. Tamir and H. L. Bertoni, "Leaky-wave analysis of optical periodic couplers", Electron. Lett., vol. 9, pp. 150-152, Mar. 22, 1973.
  20. S. T. Peng, T. Tamir and H. L. Bertoni, "Theory of periodic dielectric waveguides", IEEE Trans. Microwave Theory Tech., vol. MTT-23, pp. 123-133, Jan. 1975.
  21. W. Driemeier, "Coupled-wave analysis of the Bragg effect waveguide coupler", J. Mod. Opt., vol. 38, pp. 363 -377, Feb. 1991.
  22. S. M. Schultz, E. N. Glytsis and T. K. Gaylord, "Volume grating preferential-order focusing waveguide coupler", Opt. Lett., vol. 24, pp. 1707 -1710, Dec. 1, 1999.
  23. S. M. Schultz, E. N. Glytsis and T. K. Gaylord, "Design, fabrication and performance of preferential-order volume grating waveguide couplers", Appl. Opt. , vol. 39, pp. 1223-1231, Mar. 10, 2000.
  24. R. A. Villalaz, E. N. Glytsis and T. K. Gaylord, "Volume grating couplers: polarization and loss effects", Appl. Opt., vol. 41, pp. 5223 -5229, Sept. 1, 2002.
  25. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction", J. Opt. Soc. Amer., vol. 71, pp. 811-818, July 1981.
  26. M. G. Moharam, D. A. Pommet, E. B. Grann and T. K. Gaylord, "Stable implementation of the rigorous coupled-wave analysis of surface-relief gratings: enhanced transmittance matrix approach", J. Opt. Soc. Amer. A, vol. 12, pp. 1077-1086, May 1995 .
  27. M. Nevière, "The homogeneous problem," in Electromagnetic Theory of Gratings, R. Petit, Ed. New York: Springer-Verlag, 1980, ch. 5.
  28. M. Pecht and X. Wu, "Characterization of polyimides used in high density interconnects", IEEE Trans. Comp. Packag. B, vol. 17, pp. 632-639, Nov. 1994.
  29. R. A. Kirchhoff, C. J. Carriere, K. J. Bruza, N. G. Rondan and R. L. Sammler, "Benzocyclobutenes: a new class of high performance polymers", J. Macromol. Sci. Chem. A, vol. 28, pp. 1079-1113, 1991.
  30. H. Kogelnik, "Coupled wave theory for thick hologram cases", Bell Syst. Tech. J., vol. 48, pp. 2909-2947, Nov. 1969 .
  31. S. Kollakowski, A. Strittmatter, E. Dröge, E. H. Böttcher, D. B. O. Reimann and K. Janiak, "65 GHz InGaAs/InAlGaAs/InP waveguide-integrated photodetectors for the 1.3-1.55 µm wavelength regime", Appl. Phys. Lett., vol. 74, pp. 612-614, Jan. 25, 1999.
  32. E. H. Böttcher, H. Pfitzenmaier, E. Dröge, S. Kollakowski, A. Stittmatter, D. Bimberg and R. Steingrüber, "Distributed waveguide-integrated InGaAs MSM photodetectors for high-efficiency and ultra-wideband operation", in Proc. Conf. 11th Conf. InP and Related Material (IPRM99) , May 16-20 1999, pp. 79-82.
  33. C. H. Buchal, A. Roelofs, M. Siegert, M. Löken, K. Nashimoto, R. Pachter, B. W. Wessels, J. Shmulovich, A. K.-Y. Jen, K. Lewis, R. Sutherland and J. W. Perry, "Polymeric strip waveguides and their connection to very thin ultrafast metal-semiconductor-metal detectors", in Proc. Conf. Thin Films for Optical Waveguide Devices and Materials for Optical Limiting (Materials Research Society Symp. Proc. Vol. 597), Nov. 30-Dec. 3 1999, pp. 97- 102.
  34. F. Gouin, L. Robitaille, C. L. Callender, J. Noad and C. Almeida, "A 4 × 4 optoelectronic switch matrix integrating an MSM array with polyimide optical waveguides", in Proc. SPIE, vol. 3920, 1997, pp. 287-295.
  35. C. L. Callender, L. Robitaille, J. P. Noad, F. Gouin and C. Almeida, "Optimization of metal-semiconductor-metal (MSM) photodetector arrays integrated with polyimide waveguides", in Proc. SPIE, vol. 2918, 1997, pp. 211- 221.
  36. S.-Y. Cho, M. A. Brooke and N. M. Jokerst, "Optical interconnections for electrical boards using embedded active optoelectronic components", IEEE J. Select. Topics Quantum Electron., vol. 9, Mar./Apr. 2004. to be published.
  37. S. M. Schultz, "High efficiency volume grating couplers", Ph.D. dissertation, Georgia Inst. of Technology, 1999.
  38. S.-D. Wu and E. N. Glytsis, "Holographic grating formation in photopolymers: parameter determination based on a nonlocal diffusion model and the rigorous coupled-wave analysis", J. Opt. Soc. Amer. B, vol. 20, pp. 1177-1188, June 2003.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited