Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 21,
  • Issue 11,
  • pp. 2765-
  • (2003)

Optically Assisted Internet Routing Using Arrays of Novel Dynamically Reconfigurable FBG-Based Correlators

Not Accessible

Your library or personal account may give you access

Abstract

As routing tables in core Internet routers grow to exceed 100000 entries, it is becoming essential to develop methods to reduce the lookup time required to forward packets toward their destinations. In this paper, we employ a bank of novel thermally tuned fiber-Bragg-grating-based optical correlators to construct an"optical bypass"to accelerate conventional electronic Internet routers. The correlators are configured as a routing table cache that can quickly determine the destination port for a fraction of the incoming traffic by examining only a subset of the bits in an IP packet's 32-bit destination address. We also demonstrate a novel multiwavelength correlator based on fiber Bragg grating that can simultaneously recognize the header bits on multiple wavelengths for use in wavelength-division-multiplexed (WDM) systems. Using the optical bypass, routing table lookup times are reduced by an order of magnitude from microseconds to nanoseconds and are limited only by the speed of the optical switch.

© 2003 IEEE

PDF Article
More Like This
Integrated 10 Gb/s AWG-based correlator for multi-wavelength optical header recognition

Muhsen Aljada and Kamal E. Alameh
Opt. Express 16(7) 5150-5157 (2008)

Ultrafast photonic packet switching with optical control

Ivan Glesk, Koo I. Kang, and Paul R. Prucnal
Opt. Express 1(5) 126-132 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.