OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 21, Iss. 12 — Dec. 1, 2003
  • pp: 3104–

Photonic A/D Conversion Using Low-Temperature-Grown GaAs MSM Switches Integrated With Si-CMOS

Ryohei Urata, Lalitkumar Y. Nathawad, Ryo Takahashi, Kai Ma, David A. B. Miller, Bruce A. Wooley, and James S. Harris

Journal of Lightwave Technology, Vol. 21, Issue 12, pp. 3104- (2003)


View Full Text Article

Acrobat PDF (689 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

By linking the unique capabilities of photonic devices with the signal processing power of electronics, photonically sampled analog-to-digital (A/D) conversion systems have demonstrated the potential for superior performance over all-electrical A/D conversion systems. We adopt a photonic A/D conversion scheme using low-temperature (LT)-grown GaAs metal-semiconductor-metal (MSM) photoconductive switches integrated with Si-CMOS A/D converters. The large bandwidth of the LT GaAs switches and the low timing jitter and short width of mode-locked laser pulses are combined to accurately sample input frequencies up to several tens of gigahertz. CMOS A/D converters perform back-end digitization, and time-interleaving is used to increase the total sampling rate of the system. In this paper, we outline the development of this system,from optimization of the LT GaAs material, speed and responsivity measurements of the switches, bandwidth and linearity characterization of the first-stage optoelectronic sample-and-hold, to integration of the switches with CMOS chips. As a final proof-of-principle demonstration, a two-channel system was fabricated with LT GaAs MSM switches flip-chip bonded to CMOS A/D converters. When operated at an aggregate sampling rate of 160 megasamples/s, the prototype system exhibits ~3.5 effective number of bits (ENOB) of resolution for input signals up to 40 GHz.

© 2003 IEEE

Citation
Ryohei Urata, Lalitkumar Y. Nathawad, Ryo Takahashi, Kai Ma, David A. B. Miller, Bruce A. Wooley, and James S. Harris, "Photonic A/D Conversion Using Low-Temperature-Grown GaAs MSM Switches Integrated With Si-CMOS," J. Lightwave Technol. 21, 3104- (2003)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-21-12-3104


Sort:  Journal  |  Reset

References

  1. K. Poulton, R. Neff, B. Setterberg, B. Wuppermann, T. Kopley, R. Jewett, J. Pernillo, C. Tan and A. Montijo, "A 20 GS/s 8b ADC with a 1 MB memory in 0.18 µm CMOS", in ISSCC 2003 Tech. Dig., San Francisco, CA, 2003, pp. 318-319.
  2. R. H. Walden, "Performance trends for analog-to-digital converters", IEEE Commun. Mag., vol. 37, pp. 96-101, Feb. 1999 .
  3. X. Jiang, Z. Wang and M. F. Chang, "A 2 GS/s 6b ADC in 0.18 µm CMOS", in ISSCC 2003 Tech. Dig. , San Francisco, CA, 2003, pp. 322-323.
  4. C. Baringer, J. F. Jensen, L. Burns and R. H. Walden, "3-bit, 8 GSPS flash ADC", in Proc. Indium Phosphide Related Materials Conf., Apr. 1996, pp. 64-67.
  5. K. R. Nary, R. Nubling, S. Beccue, W. T. Colleran, J. Penney and K. Wang, "An 8-bit, 2 gigasample per second analog to digital converter", in GaAs IC Symp. Tech. Dig., vol. 17, Oct. 1995, pp. 303-306.
  6. K. Poulton, K. L. Knudsen, J. J. Corcoran, K. Wang, R. B. Nubling, R. L. Pierson, M. F. Chang and P. M. Asbeck, "A 6-bit, 4 GSa/s ADC fabricated in a GaAs HBT process", in GaAs IC Symp. Tech. Dig., vol. 16, Oct. 1994, pp. 240-243.
  7. D. H. Auston, "Picosecond optoelectronic switching and gating in silicon", Appl. Phys. Lett., vol. 26, pp. 101-103, Feb. 1975.
  8. H. A. Haus, "Mode-locking of lasers", IEEE J. Select. Topics Quantum Electron., vol. 6, pp. 1173 -1185, Nov./Dec. 2000.
  9. H. F. Taylor, "An electrooptic analog-to-digital converter", Proc. IEEE, vol. 63, pp. 1524-1525, Oct. 1975.
  10. id="ref10"twemrule="yes"> H. F. Taylor, "An optical analog-to-digital converter-Design and analysis", IEEE J. Quantum Electron., vol. QE-15, pp. 210-216, Apr. 1979.
  11. P. W. Juodawlkis, J. C. Twichell, G. E. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O'Donnell, K. G. Ray and R. C. Williamson, "Optically sampled analog-to-digital converters", IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1840-1853, Oct. 2001.
  12. T. R. Clark, Jr., and M. L. Dennis, "Toward a 100-GSample/s photonic A-D converter", IEEE Photon. Technol. Lett., vol. 13, pp. 236-238, Mar. 2001.
  13. F. Coppinger, A. S. Bhushan and B. Jalali, "12 Gsample/s wavelength division sampling analogue-to-digital converter", Electron. Lett., vol. 36, pp. 316-318, Feb. 2000.
  14. T. R. Clark, J. U. Kang and R. D. Esman, "Performance of a time-and wavelength-interleaved photonic sampler for analog-digital conversion", IEEE Photon. Technol. Lett., vol. 11, pp. 1168-1170, Sept. 1999.
  15. A. S. Bhushan, P. V. Kelkar, B. Jalali, O. Boyraz and M. Islam, "130-GSa/s photonic analog-to-digital converter with time stretch preprocessor", IEEE Photon. Technol. Lett., vol. 14, pp. 684-686, May 2002.
  16. S. Galt, A. Magnusson and S. Hard, "Dynamic demonstration of diffractive optic analog-to-digital converter scheme", Appl. Opt., vol. 42, pp. 264-270, Jan. 2003 .
  17. H. Sakata, "Photonic analog-to-digital conversion by use of nonlinear Fabry-Pérot resonators", Appl. Opt. , vol. 40, pp. 240-248, Jan. 2001.
  18. L. Brzozowski and E. H. Sargent, "All-optical analog-to-digital converters, hardlimiters and logic gates", J. Lightwave Technol., vol. 19, pp. 114-119, Jan. 2001.
  19. M. Currie, T. R. Clark and P. J. Matthews, "Photonic analog-to-digital conversion by distributed phase modulation", IEEE Photon. Technol. Lett., vol. 12, pp. 1689-1691, Dec. 2000.
  20. R. C. Williamson, P. W. Juodawlkis, J. L. Wasserman, G. E. Betts and J. C. Twichell, "Effects of crosstalk in demultiplexers for photonic analog-to-digital converters", J. Lightwave Technol., vol. 19, pp. 230-236, Feb. 2001.
  21. R. Urata, R. Takahashi, V. A. Sabnis, D. A. B. Miller and J. S. Harris, Jr., "Ultrafast optoelectronic sample-and-hold using low-temperature-grown GaAs MSM", IEEE Photon. Technol. Lett., vol. 15, pp. 724-726, May 2003.
  22. L. Y. Nathawad, R. Urata, B. A. Wooley and D. A. B. Miller, "A 20 GHz bandwidth, 4b photoconductive-sampling time-interleaved CMOS ADC", in ISSCC 2003 Tech. Dig., San Francisco, CA, 2003, pp. 320-321.
  23. R. Urata, L. Y. Nathawad, K. Ma, R. Takahashi, D. A. B. Miller, B. A. Wooley and J. S. Harris, Jr., "Ultrafast sampling using low temperature grown GaAs MSM switches integrated with CMOS amplifier for photonic A/D conversion", in Proc. IEEE LEOS Annu. Meeting, Glasgow, Scotland, 2002, pp. 809-810.
  24. R. Urata, R. Takahashi, V. A. Sabnis, D. A. B. Miller and J. S. Harris, Jr., "Ultrafast differential sample and hold using low-temperature-grown GaAs MSM for photonic A/D conversion", IEEE Photon. Technol. Lett., vol. 13, pp. 717 -719, July 2001.
  25. X. Liu, A. Prasad, W. M. Chen, A. Kurpiewski, A. Stoschek, Z. Liliental-Weber and E. R. Weber, "Mechanism responsible for the semi-insulating properties of low-temperature-grown GaAs", Appl. Phys. Lett., vol. 65, pp. 3002-3004, Dec. 1994.
  26. D. C. Look, D. C. Walters, M. O. Manasreh, J. R. Sizelove, C. E. Stutz and K. R. Evans, "Anomalous Hall-effect results in low-temperature molecular-beam-epitaxial GaAs: Hopping in a dense EL2-like band", Phys. Rev. B, vol. 42, pp. 3578-3581, Aug. 1990.
  27. X. Liu, A. Prasad, J. Nishio, E. R. Weber, Z. Liliental-Weber and W. Walukiewicz, "Native point defects in low-temperature-grown GaAs", Appl. Phys. Lett., vol. 67, pp. 279-281, July 1995.
  28. M. R. Melloch, N. Otsuka, J. M. Woodall, A. C. Warren and J. L. Freeouf, "Formation of arsenic precipitates in GaAs buffer layers grown by molecular beam epitaxy at low substrate temperatures", Appl. Phys. Lett., vol. 57, pp. 1531-1533, Oct. 1990.
  29. Z. Liliental-Weber, X. W. Lin, J. Washburn and W. Schaff, "Rapid thermal annealing of low-temperature GaAs layers", Appl. Phys. Lett., vol. 66, p. 2086-2088, Apr. 1995.
  30. S. Gupta, J. F. Whitaker and G. A. Mourou, "Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures", IEEE J. Quantum Electron., vol. 28, pp. 2464 -2472, Oct. 1992.
  31. M. Kuzuhara, H. Kohzu and Y. Takayama, "Rapid thermal annealing of III-V compound materials", in Proc. Mater. Res. Soc. Symp., vol. 23, 1984, pp. 651-662.
  32. D. H. Auston, "Impulse response of photoconductors in transmission lines", IEEE J. Quantum Electron., vol. QE-19, pp. 639-648, Apr. 1983 .
  33. J. A. Valdmanis and G. Mourou, "Subpicosecond electrooptic sampling: Principles and applications", IEEE J. Quantum Electron. , vol. QE-22, pp. 69-78, Jan. 1986.
  34. M. Haiml, U. Siegner, F. Morier-Genoud, U. Keller, M. Luysberg, R. C. Lutz, P. Specht and E. R. Weber, "Optical nonlinearity in low-temperature-grown GaAs: Microscopic limitations and optimization strategies", Appl. Phys. Lett., vol. 74, pp. 3134-3136, May 1999.
  35. M. Yoneyama, T. Shibata, E. Sano, Y. Kawamura, R. Takahashi, T. Enoki, T. Nagatsuma and M. Yaita, "A differential photoconductive AND gate with Be-doped low-temperature-grown InGaAs-InAlAs MQW MSM-PD's", IEEE J. Quantum Electron., vol. 33, pp. 1308-1315, Aug. 1997 .
  36. G. M. Dunn, A. B. Walker, A. J. Vickers and V. R. Wicks, "Transient response of photodetectors", J. Appl. Phys., vol. 79, pp. 7329-7338, May 1996.
  37. K. Kattmann and J. Barrow, "A technique for reducing differential nonlinearity errors in flash A/D converters", in ISSCC 1991 Tech. Dig., San Francisco, CA, 1991, pp. 170-171.
  38. K. W. Goosen, J. A. Walker, L. A. D'Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine and D. A. B. Miller, "GaAs MQW modulators integrated with silicon CMOS", IEEE Photon. Technol. Lett., vol. 7, pp. 360-362, Apr. 1995.
  39. W. C. Black, Jr., and D. A. Hodges, "Time interleaved converter arrays", IEEE J. Solid-State Circuits, vol. SC-15, pp. 1022-1029, Dec. 1980.
  40. H. Chin, P. Atanackovic and D. A. B. Miller, "Optical remoting of ultrafast charge packets using self-linearized modulation", in CLEO 2000 Tech. Dig., San Francisco, CA, 2000, pp. 508-509.
  41. E. R. Weber, private communication, Apr. 2003

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited