OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 22, Iss. 12 — Dec. 1, 2004
  • pp: 2834–

Recipe for Intensity Modulation Reduction in SOA-Based Interferometric Switches

Nikos Pleros, Chris Bintjas, George T. Kanellos, Kyriakos Vlachos, Hercules Avramopoulos, and George Guekos

Journal of Lightwave Technology, Vol. 22, Issue 12, pp. 2834- (2004)


View Full Text Article

Acrobat PDF (459 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

This paper presents a theoretical and experimental analysis of saturated semiconductor optical amplifier (SOA)-based interferometric switching arrangements. For the first time, it is shown that such devices can provide enhanced intensity modulation reduction to return-to-zero (RZ) formatted input pulse trains, when the SOA is saturated with a strong continuous-wave (CW) input signal. A novel theoretical platform has been developed in the frequency domain, which reveals that the intensity modulation of the input pulse train can be suppressed by more than 10 dB at the output. This stems from the presence of the strong CW signal that transforms the sinusoidal transfer function of the interferometric switch into an almost flat, strongly nonlinear curve. This behavior has also been verified experimentally for both periodically and randomly degraded, in terms of intensity modulation, signals at 10 Gb/s using the ultrafast nonlinear interferometer as the switching device. Performance analysis both in the time and frequency domains is demonstrated, verifying the concept and its theoretical analysis.

© 2004 IEEE

Citation
Nikos Pleros, Chris Bintjas, George T. Kanellos, Kyriakos Vlachos, Hercules Avramopoulos, and George Guekos, "Recipe for Intensity Modulation Reduction in SOA-Based Interferometric Switches," J. Lightwave Technol. 22, 2834- (2004)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-22-12-2834


Sort:  Journal  |  Reset

References

  1. C. Bintjas, N. Pleros and H. Avramopoulos, "System perspective for all-optical switching", in IEEE/LEOS Newslett. , vol. 16, Oct. 2002, pp. 19-21.
  2. M. Saruwatari, "All-optical signal processing for Terabit/second optical transmission", IEEE J. Select. Topics Quantum Electron., vol. 6, pp. 1363-1374, Nov.-Dec. 2000.
  3. N. S. Patel, K. L. Hall and K. A. Rauschenbach, "Interferometric all-optical switches for ultrafast signal processing", Appl. Opt., vol. 37, pp. 2831-2842, May 1998.
  4. K. E. Stubkjaer, "Semiconductor optical amplifier-based all-optical gates for high-speed optical processing", IEEE J. Select. Topics Quantum Electron. , vol. 6, pp. 1428-1435, Nov.-Dec. 2000.
  5. B. Lavigne, et al. "Low input power all-optical 3R regenerator based on SOA devices for 42.66 Gbit/s ULH WDM RZ transmissions with 23 dB span loss and all-EDFA amplification", presented at the Optical Fiber Communication Conf. (OFC 2003), Atlanta, GA, 2003,PD15.
  6. M. Nakazawa, "Tb/s OTDM technology", in Proc. European. Conf. Optical Communication, vol. 2, Amsterdam, The Netherlands, 2001, pp. 184-187.
  7. Y. Ueno, S. Nakamura, K. Tajima and S. Kitamura, "3.8-THz wavelength conversion of picosecond pulses using a semiconductor delayed-interference signal-wavelength converter (DISC)", IEEE Photon. Technol. Lett., vol. 10, pp. 346-348, Mar. 2002.
  8. K. L. Hall and K. A. Rauscehbach, "100 Gbit/s bitwise logic", Opt. Lett., vol. 23, pp. 1271-1273, Aug. 1998.
  9. V. M. Menon, et al. "All-optical wavelength conversion using a regrowth-free monolithically integrated SAGNAC interferometer", IEEE Photon. Technol. Lett., vol. 15, pp. 254-256, Feb. 2002.
  10. R. P. Webb, R. J. Manning, G. D. Maxwell and A. J. Poustie, "40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer", Electron. Lett., vol. 39, pp. 79-81, Jan. 2003.
  11. C. Bintjas, et al. "20 Gbps all-optical XOR with UNI gate", IEEE Photon. Technol. Lett., vol. 14, pp. 834 -836, July 2000.
  12. C. Schubert, et al. "Comparison of interferometric all-optical switches for demultiplexing applications in high-speed OTDM systems", J. Lightwave Technol., vol. 20, pp. 618-624, Apr. 2002.
  13. M. Tsurusawa, K. Nishimura and M. Usami, "First demonstration of simultaneous demultiplexing from 80 Gb/s to 2 x 40 Gb/s by SOA-based all-optical polarization switch", in Eur. Conf. Optical Communication, vol. 4, Amsterdam, The Netherlands, 2001, pp. 500-501.
  14. S. Nakamura, Y. Ueno and K. Tajima, "168-Gb/s all-optical wavelength conversion with a symmetric-Mach-Zehnder-type switch", IEEE Photon. Technol. Lett., vol. 13, pp. 1091 -1093, Oct. 2001.
  15. M. L. Nielsen, et al. "40 Gbit/s standard-mode wavelength conversion in all-active MZI with very fast response", Electron. Lett., vol. 39, pp. 385-386, Feb. 2003.
  16. A. E. Kelly, et al. "80-Gb/s all-optical regenerative wavelength conversion using semiconductor optical amplifier based interferometer", Electron. Lett., vol. 35, pp. 1477-1478, Aug. 1999.
  17. O. Leclerc, "Optical 3R regeneration for 40 Gbit/s line-rates and beyond", in Proc. Optical Fiber Communication Conf. (OFC 2002), 2002, pp. 79-81.
  18. C. Bornholdt, J. Slovak and B. Sartorius, "Novel all-optical 3R regenerator concept demonstrated at 40 Gbit/s", presented at the Eur. Conf. Optical Communication, Copenhagen, Denmark, 2002, PD4.8.
  19. S. A. Hamilton and B. S. Robinson, "40-Gb/s all-optical packet synchronization and address comparison for OTDM networks", IEEE Photon. Technol. Lett., vol. 14, pp. 209-211, Feb. 2002.
  20. H. J. S. Dorren, et al. "Optical packet switching and buffering by using all-optical signal processing methods", J. Lightwave Technol., vol. 21, pp. 2-12, Jan. 2003.
  21. R. J. Manning and D. A. O. Davies, "Three-wavelength device for all-optical signal processing", Opt. Lett., vol. 19, pp. 889-891, June 1994.
  22. M. Usami, M. Tsurusawa and Y. Matsushima, "Mechanism for reducing recovery time of optical nonlinearity in semiconductor laser amplifier", Appl. Phys. Lett., vol. 72, pp. 2657-2659, May 1998.
  23. J. L. Pleumeekers, et al. "Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength", IEEE Photon. Technol. Lett., vol. 14, pp. 12 -14, Jan. 2002.
  24. R. Inohara, K. Nishimura, M. Tsurusawa and M. Usami, "Experimental analysis of cross-phase modulation and cross-gain modulation in SOA-injecting CW assist light", IEEE Photon. Technol. Lett., vol. 15, pp. 1192-1194, Sept. 2003.
  25. C. Bintjas, et al. "Clock recovery circuit for optical packets", IEEE Photon. Technol. Lett., vol. 14, pp. 1363 -1365, Sept. 2002.
  26. N. Pleros, et al. "All-optical clock recovery from short, asynchronous data packets at 10 Gb/s", IEEE Photon. Technol. Lett., vol. 15, pp. 1291 -1293, Sept. 2003.
  27. C. Bintjas, et al. "All-optical packet address and payload separation", IEEE Photon. Technol. Lett., vol. 14, pp. 1728-1730, Dec. 2002.
  28. G. T. Kanellos, et al. "Clock and data recovery circuit for 10 Gb/s asynchronous optical packets", IEEE Photon. Technol. Lett., vol. 15, pp. 1666-1668, Nov. 2003.
  29. C. Bintjas, K. Vlachos, N. Pleros and H. Avramopoulos, "Ultrafast nonlinear interferometer (UNI)-based digital optical circuits and their use in packet switching", J. Lightwave Technol. (Special Issue on Optical Networks), vol. 21, pp. 2629-2637, Nov. 2003.
  30. G. P. Agrawal and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers", IEEE J. Quantum Electron., vol. 25, pp. 2297-2306, Nov. 1989.
  31. M. Eiselt, W. Pieper and H. G. Weber, "SLALOM: Semiconductor laser amplifier in a loop mirror", J. Lightwave Technol., vol. 13, pp. 2099-2112, Oct. 1995.
  32. T. Akiyama, et al. "Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices", IEEE J. Quantum Electron., vol. 37, pp. 1059-1065, Aug. 2001.
  33. C. Nuzman, J. Leuthold, R. Ryf, S. Chandrasekhar, C. R. Giles and D. T. Neilson, "Design and implementation of wavelength-flexible network nodes", J. Lightwave Technol., vol. 21, pp. 648-663, Mar. 2000.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited