OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 22, Iss. 2 — Feb. 1, 2004
  • pp: 362–

Impact of Chromatic and Polarization-Mode Dispersions on DPSK Systems Using Interferometric Demodulation and Direct Detection

Jin Wang and Joseph M. Kahn

Journal of Lightwave Technology, Vol. 22, Issue 2, pp. 362- (2004)


View Full Text Article

Acrobat PDF (409 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We study the impact of chromatic dispersion (CD) and first-order polarization-mode dispersion (PMD) on systems using binary differential phase-shift keying (2-DPSK) or quaternary DPSK (4-DPSK) with nonreturn-to-zero (NRZ) or return-to-zero (RZ) formats. These signals are received using optical preamplification,interferometric demodulation, and direct detection. We consider the linear propagation regime and compute optical power penalties at fixed bit-error ratio (BER). In order to evaluate the BER precisely taking account amplifier noise, arbitrary pulse shapes, arbitrary optical and electrical filtering,CD, and PMD, we introduce a novel model for DPSK systems and compute the BER using a method recently proposed by Forestieri for on-off keying (OOK) systems. We show that when properly applied,the method yields highly accurate results for DPSK systems. We have found that when either the NRZ or RZ format is used, 2-DPSK exhibits lower power penalties than OOK in the presence of CD and first-order PMD. RZ-2-DPSK, as compared with NRZ-2-DPSK, incurs smaller penalties due to PMD, but offers no advantage in terms of CD. 4-DPSK, as it has twice the symbol duration of OOK or 2-DPSK for a given bit rate, incurs much lower CD and PMD power penalties than either of these techniques. RZ-4-DPSK is especially promising, as it offers CD and PMD penalties significantly smaller than all other techniques,including NRZ-4-DPSK.

© 2004 IEEE

Citation
Jin Wang and Joseph M. Kahn, "Impact of Chromatic and Polarization-Mode Dispersions on DPSK Systems Using Interferometric Demodulation and Direct Detection," J. Lightwave Technol. 22, 362- (2004)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-22-2-362


Sort:  Journal  |  Reset

References

  1. M. Rohde, C. Caspar, N. Heimes, M. Konitzer, E.-J. Bachus and N. Hanik, "Robustness of DPSK direct detection transmission format in standard fiber WDM systems", Electron. Lett., vol. 36, pp. 1483-1484, Aug. 1999.
  2. H. Nizhizawa, Y. Yamada, Y. Shibata and K. Habara, "10-Gb/s optical DPSK packet receiver proof against large power fluctuation", IEEE Photon. Technol. Lett., vol. 11, pp. 733-735, June 1999.
  3. R. A. Griffin and A. C. Carter, "Optical differential quadrature phase-shift key (oDQPSK) for high capacity optical transmission", in Tech. Dig. OFC 2002, Washington, DC, pp. 367- 368.
  4. A. H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold, C. Doerr, L. Stulz, A. Agarwal, S. Banerjee, D. Grosz, S. Hunsche, A. Kung, A. Marhelyuk, D. Maywar, M. Movagassaghi, X. Liu, C. Xu, X. Wei and D. M. Gill, "2.5 Tb/s (64 × 42.7 Gb/s) transmission over 40 × 100 km NZDSF using RZ-DPSK format and all-Raman-amplified spans", in Tech. Dig. Postdeadline Papers, OFC, 2002, pp. FC2.1-FC2.3.
  5. W. Christoph, L. Jochen and R. Werner, "RZ-DQPSK format with high spectral efficiency and high robustness toward fiber nonlinearities", presented at the ECOC, Copenhagen, Denmark, Paper 9.6.6, Sept. 2002.
  6. H. Bissessur, G. Charlet, E. Gohin, C. Simonneau, L. Pierre and W. Idler, "1.6 Tb/s (40 × 40 Gb/s) DPSK transmission with direct detection", presented at the ECOC, Copenhagen, Denmark,Sept. 2002.
  7. A. F. Elrefale, R. E. Wagner, D. A. Atlas and D. G. Daut, "Chromatic dispersion limitations in coherent lightwave transmission systems", J. Lightwave Technol. , vol. 5, pp. 704-709, May 1988.
  8. C. De Angelis, A. Galtarossa, C. Campanile and F. Matera, "Performance evaluation of ASK and DPSK optical coherent systems affected by chromatic dispersion and polarization mode dispersion", J. Opt. Commun., vol. 16, pp. 173-178, May 1995.
  9. G. Jacobsen, "Performance of DPSK and CPFSK systems with significant post-detection filtering", J. Lightwave Technol., vol. 11, pp. 1622-1631, Oct. 1993 .
  10. S. R. Chinn, D. M. Boroson and J. C. Livas, "Sensitivity of optically preamplified DPSK receivers with Fabry-Perot filters", J. Lightwave Technol., vol. 14, pp. 370-375, Mar. 1996.
  11. E. Forestieri, "Evaluating the error probability in lightwave systems with chromatic dispersion, arbitrary pulse shape and pre-and postdetection filtering", J. Lightwave Technol., vol. 18, pp. 1493-1503, Nov. 2000.
  12. M. Kac and A. J. F. Siegert, "On the theory of noise in radio receivers with square law detectors", J. Appl. Phys., vol. 18, pp. 383-397, 1947.
  13. J. E. Mazo and J. Salz, "Probability of error for quadratic detectors", Bell Syst. Tech. J., vol. 44, pp. 2165-2186, 1965.
  14. J. Lee and C. Shim, "Bit-error-rate analysis of optically preamplified receivers using an eigenfunction expansion method in optical frequency domain", J. Lightwave Technol., vol. 12, pp. 1224-1229, July 1994.
  15. G. Bosco, A. Carena, V. Curri, R. Gaudino, P. Poggiolini and S. Benedetto, "A novel analytical method for the BER evaluation in optical systems affected by parametric gain", IEEE Photon. Technol. Lett., vol. 12, pp. 152-154, Feb. 2000 .
  16. P. J. Winzer, S. Chandrasekhar and H. Kim, "Impact of filtering on RZ-DPSK reception", IEEE Photon. Technol. Lett., vol. 15, pp. 840-842, June 2003.
  17. P. J. Winzer, M. Pfennigbauer, M. M. Strasser and W. R. Leeb, "Optimum filter bandwidths for optically preamplified NRZ receivers", J. Lightwave Technol., vol. 19, pp. 1263-1273, 2001.
  18. G. P. Agrawal, Fiber-Optic Communication Systems, New York: Wiley, 2002.
  19. D. E. Johnson, J. R. Johnson and H. P. Moore, A Handbook of Active Filters, Englewood Cliffs, NJ: Prentice-Hall, 1980.
  20. C. D. Poole and R. E. Wagner, "Phenomenological approach to polarization dispersion in long single-mode fibers", Electron. Lett., vol. 22, pp. 1029-1030, Sept. 1986.
  21. C. D. Poole and C. R. Giles, "Polarization-dependent pulse compression and broadening due to polarization dispersion in dispersion-shifted fiber", Opt. Lett., vol. 13, pp. 155-157, Feb. 1988.
  22. H. Kolgelnik, R. M. Jopson and L. E. Nelson, "Polarization-mode dispersion," in Optical Fiber Telecommunication IVB Systems and Impairments, I. P.Ivan P. Kaminow, and T. Tingye Li, Eds. San Diego, CA: Academic Press, 2002, pp. 725-861.
  23. A. O. Lima, I. T. Lima, T. Adali and C. R. Menyuk, "Comparison of power penalties due to first-and all-order PMD distortions", presented at the ECOC, Copenhagen, Denmark,Paper 7.1.2, Sept. 2002.
  24. M. C. Jeruchim, P. Balaban and K. S. Shanmugan, Simulation of Communication Systems, New York: Plenum Press, 1992, pp. 496-503.
  25. S. Golomb, Shift Register Sequences, Laguna Hills, CA: Aegean Press, 1982.
  26. O. K. Tonguz and R. E. Wagner, "Equivalence between preamplified direct detection and heterodyne receivers", IEEE Photon. Technol. Lett., vol. 3, pp. 835 -837,
  27. G. J. Foschini and C. D. Poole, "Statistical theory of PMD in single mode fibers", J. Lightwave Technol., vol. 9, pp. 1439-1456, Nov. 1991 .

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited