OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 22, Iss. 2 — Feb. 1, 2004
  • pp: 526–

Investigation of Resonantly Enhanced Modulators on LiNbO3 Using FEM and Numerical Optimization Technique

Thach Giang Nguyen, Arnan Mitchell, and Yuvaraja S. Visagathilagar

Journal of Lightwave Technology, Vol. 22, Issue 2, pp. 526- (2004)

View Full Text Article

Acrobat PDF (388 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Highly efficient resonantly enhanced modulators on X-cut LiNbO3 are investigated through the use of numerical optimization. We describe the optimization technique and present a new design trend relating the link-gain efficiency of optical radio systems that employ external modulation to the choice of modulator electrode geometric dimensions, especially the electrode gap. Using this optimization technique, resonant-type modulators with link gain enhancement up to 6 dB are achievable while maintaining excellent return loss at a resonant frequency of 1.8 GHz. The characteristics of both the optical waveguide and the coplanar electrode are characterized by finite-element simulation.

© 2004 IEEE

Thach Giang Nguyen, Arnan Mitchell, and Yuvaraja S. Visagathilagar, "Investigation of Resonantly Enhanced Modulators on LiNbO3 Using FEM and Numerical Optimization Technique," J. Lightwave Technol. 22, 526- (2004)

Sort:  Journal  |  Reset


  1. E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien and D. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems", IEEE J. Select. Topics Quantum Electron. , vol. 6, pp. 69-82, Jan.-Feb. 2000.
  2. K. Noguchi, O. Mitomi and H. Miyazawa, "Millimeter-wave Ti:LiNbO3 optical modulators", J. Lightwave Technol., vol. 16, pp. 615-619, Apr. 1998.
  3. A. Nirmalathas, D. Novak, C. Lim, R. Waterhouse and D. Castleford, "Fiber networks for wireless applications", in Proc. 2000 IEEE 13th Annu. Meeting Conf. Lasers Electro-Optics Soc. (LEOS 2000), vol. 1, 2000, pp. 35-36.
  4. G. Gopalakrishnan and W. Burns, "Performance and modeling of resonantly enhanced LiNbO3 modulators for low-loss analog fiber-optic links", IEEE Trans. Microwave Theory Tech., vol. 42, pp. 2650-2656, Dec. 1994.
  5. T. Kawanishi, S. Oikawa, K. Higuma, Y. Matsuo and M. Izutsu, "LiNbO3 resonant-type optical modulator with double-stub structure", Electron. Lett., vol. 37, no. 20, pp. 1277-1246, 2001.
  6. T. Kawanishi, Y. Matsuo, M. Izutsu, S. Oikawa and K. Higuma, "Resonant-type optical modulator with double-stub structure", in Proc. IEEE 14th Annu. Meeting Lasers Electro-Optics Soc. 2001 (LEOS 2001), vol. 1, 2001, pp. 184-185.
  7. T. Kawanishi, S. Oikawa, K. Higuma, M. Sasaki and M. Izutsu, "Design of LiNbO3 optical modulator with an asymmetric resonant structure", IEICE Trans. Electron., vol. E85-C, no. 1, pp. 150-155, 2002 .
  8. T. Kawanishi, Y. Matsuo, M. Izutsu, S. Oikawa and K. Higuma, "Reflection-type Mach-Zehnder LiNbO3 optical modulator with double-stub structure", in Proc. Conf. Lasers Electro-Optics Soc. Annu. Meeting, vol. 2, 2002, pp. 833-834.
  9. R. Krahenbuhl and M. Howerton, "Investigations on short-path-length high-speed optical modulators in LiNbO3 with resonant-type electrodes", J. Lightwave Technol., vol. 19, pp. 1287-1297, Sept. 2001.
  10. S. Oikawa, T. Kawanishi, K. Higuma, Y. Matsuo and M. Izutsu, "Double-stub structure for resonant-type optical modulators using 20-µm -thick electrode", IEEE Photon. Technol. Lett., vol. 15, pp. 221 -223, Feb. 2003.
  11. M. Sugiyama, M. Doi, S. Taniguchi, T. Nakazawa and H. Onaka, "Driver-less 40 Gb/s LiNbO3 modulator with sub-1 V drive voltage", in Tech. Dig. Conf. Optical Fiber Communication, vol. 70, 2002, pp. FB62- FB64.
  12. Y. Visagathilagar, A. Mitchell and R. Waterhouse, "Fabry-Pérot type resonantly enhanced Mach-Zehnder modulator", in Tech. Dig. Int. Topical Meeting Microwave Photonics (MWP'99), vol. 1, 1999,Cat. 99EX301,. pp. 17-20.
  13. S. Hum, M. Okoniewski and R. Davies, "Modulator structures for radio-on-fiber applications", in Proc. 14th Int. Conf. Microwaves, Radar Wireless Communications , vol. 1, 2002, pp. 37-40.
  14. A. Lindsay, G. Knight and S. Winnall, "Photonic mixers for wide bandwidth RF receiver applications", IEEE Trans. Microwave Theory Tech., vol. 43, pp. 2311-2317, Sept. 1995.
  15. J. Jin, The Finite Element Method in Electromagnetics, New York: Wiley, 1993.
  16. C. Kim and R. Ramaswamy, "Overlap integral factors in integrated optic modulators and switches", J. Lightwave Technol., vol. 7, pp. 1063-1070, July 1989.
  17. S.-J. Chang, C.-L. Tsai, Y.-B. Lin, J.-F. Liu and W.-S. Wang, "Improved electrooptic modulator with ridge structure in X-cut LiNbO3", J. Lightwave Technol., vol. 17, pp. 843-847, May 1999.
  18. A. Mitchell, M. Lech, R. B. Waterhouse and D. M. Kokotoff, "Automatic search for efficient broadband microstrip patch antennas", in Proc. Asia-Pacific Microwave Conf. (APMC) , vol. 3, 2001, pp. 1251-1254.
  19. L. Ingber, "Adaptive simulated annealing (ASA): Lessons learned", Control Cybern., vol. 25, no. 1, pp. 33-54, 1996.
  20. L. Ingber and B. Rosen, "Genetic algorithms and very fast simulated reannealing: A comparison", Math. Comput. Model., vol. 16, no. 11, pp. 87-100, 1992.
  21. Y. Visagathilagar, A. Mitchell and M. Austin, "General theoretical model for resonantly enhanced optical modulators", in Proc. 8th OptoElectronics Communications Conf. (OEC), vol. 23, 2003, pp. 337-338.
  22. J. K. A. Everard and K. Cheng, "High performance direct coupled bandpass filters on coplanar waveguide", IEEE Trans. Microwave Theory Tech., vol. 41, pp. 1568-1572, Sept. 1993.
  23. J. Kondo, A. Kondo, K. Aoki, S. Takatsuji, O. Mitomi, M. Imaeda, Y. Kozuka and M. Minakata, "Low-drive-voltage 40 Gb/s modulator on X-cut LiNbO3 wafer", in Proc. 27th Eur. Conf. Optical Communication (ECOC '01), vol. 3, 2001, pp. 334-335.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited