OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 23, Iss. 1 — Jan. 1, 2005
  • pp: 203–

10-Gb/s Upgrade of Bidirectional CWDM Systems Using Electronic Equalization and FEC

P. J. Winzer, F. Fidler, M. J. Matthews, L. E. Nelson, H. J. Thiele, J. H. Sinsky, S. Chandrasekhar, M. Winter, D. Castagnozzi, L. W. Stulz, and L. L. Buhl

Journal of Lightwave Technology, Vol. 23, Issue 1, pp. 203- (2005)


View Full Text Article

Acrobat PDF (958 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We discuss options for upgrading coarse wavelength-division multiplexed (CWDM) optical access links over standard single-mode fiber (SSMF) by increasing per-channel data rates from 2.5 to 10 Gb/s. We identify electronic equalization and forward error correction (FEC) as the enabling technologies to overcome the dispersion limit of SSMF. In addition, we show how FEC enhances the tolerance to in-band crosstalk, and paves the way toward fully bidirectional CWDM transmission. Due to the lack of CWDM sources rated for 10-Gb/s operation, we demonstrate full-spectrum (1310 to 1610 nm) 10-Gb/s CWDM transmission over standard-dispersion fiber using uncooled, directly modulated lasers specified for 2.5 Gb/s. All 16 CWDM channels could be transmitted over more than 40 km, yielding a capacity-times-distance product of 6.4 Tb/s/km. The longest transmission distance (80 km) was achieved at 1610 nm, equivalent to 1600 ps/nm of chromatic dispersion.

© 2005 IEEE

Citation
P. J. Winzer, F. Fidler, M. J. Matthews, L. E. Nelson, H. J. Thiele, J. H. Sinsky, S. Chandrasekhar, M. Winter, D. Castagnozzi, L. W. Stulz, and L. L. Buhl, "10-Gb/s Upgrade of Bidirectional CWDM Systems Using Electronic Equalization and FEC," J. Lightwave Technol. 23, 203- (2005)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-23-1-203


Sort:  Journal  |  Reset

References

  1. S. K. Das, et al. "40 Gb/s (16 x 2.5-Gb/s) full spectrum coarse WDM transmission over 75 km low water peak fiber for low-cost metro and cable-TV applications", in NFOEC 2002, Dallas, TX, pp. 881-887.
  2. H. J. Thiele, et al. "Capacity-enhanced coarse WDM transmission using 10 Gbit/s sources and DWDM overlay", Electron. Lett., vol. 39, no. 17, 2003.
  3. Sogawa, et al. "Study on full-spectrum directly modulated CWDM transmission of 10 Gb/s per channel over water-peak-suppressed nonzero dispersion shifted fiber", in ECOC'02 8.2.1, 2002.
  4. G. Sakaino, et al. "Transmission characteristics of uncooled and directly modulated 1.3 � m distributed feedback laser diode for serial 10 Gigabit Ethernet", in 17th Int. Semiconductor Laser Conf., vol. 89, 2000.
  5. K. Sato, et al. "Direct modulation of a distributed feedback laser for 40 Gb/s very-short-reach optical links", in OFC'02, 2002, Paper ThF2.
  6. B. Wedding, et al. "43 Gbit/s transmission over 210 km SMF with a directly modulated laser diode", in Proc. ECOC'03, 2003, Paper Mo4.3.7,. pp. 98-99.
  7. H. J. Thiele, et al. "16 x 10-Gb/s CWDM transmission over 40 km using uncooled, directly modulated lasers rated for 2.5 Gb/s", in OECC'03, 2003,Paper PD 4.
  8. H. S. Chung, et al. "Directly modulated CWDM/DWDM system using negative dispersion fiber for metro network application", in Proc. OFC'04, 2004, Paper WG5.
  9. P. J. Winzer, et al. "Electronic equalization and FEC enable bidirectional CWDM capacities of 9.6 Tb/s-km", in Proc. OFC'04, 2004, Paper PDP7.
  10. Tomkos, et al. "10-Gb/s transmission of 1.55-� m directly modulated signal over 100 km of negative dispersion fiber", Photon. Technol. Lett., vol. 13, pp. 735-735, 2001.
  11. M. D. Feuer, et al. "Electronic dispersion compensation for a 10-Gb/s link using a directly modulated laser", Photon. Technol. Lett. , vol. 15, pp. 1788-1788, 2003.
  12. C. R. S. Fludger, et al. "Electronic equalization for low cost 10 Gbit/s directly modulated systems", in Proc. OFC'04, 2004, Paper WM7.
  13. D. Castagnozzi, "Digital signal processing and electronic equalization (EE) of ISI", in Proc. OFC'04, 2004, Paper WM6.
  14. J. G. Proakis, Digital Communications, New York: McGraw-Hill, 1995.
  15. J. Winters, et al. "Electrical signal processing techniques in long-haul fiber-optic systems", IEEE Trans. Commun., vol. 38, pp. 1439-1439, 1987.
  16. H. Bulow, et al. "Electronic PMD mitigation-From linear equalization to maximum likelihood detection", in Proc. OFC'01, 2001, Paper WAA3-3.
  17. H. F. Haunstein, et al. "Design of near optimum electrical equalizers for optical transmission in the presence of PMD", in Proc. OFC'01, 2001, Paper WAA4-1.
  18. P. J. Corvini, et al. "Computer simulation of high-bit-rate optical fiber transmission using single-frequency lasers", J. Lightw. Technol., vol. 5, pp. 1591-1591, 1987.
  19. S. Mohrdiek, et al. "10-Gb/s standard fiber transmission using directly modulated 1.55-� m quantum-well DFB lasers", Photon. Technol. Lett., vol. 7, pp. 1357-1359, 1995.
  20. S. Radic, et al. "Dense interleaved bidirectional transmission over 5 x 80 km of nonzero dispersion-shifted fiber", Photon. Technol. Lett., vol. 14, pp. 218-220, 2002.
  21. S. K. Das, et al. "Beat interference penalty in optical duplex transmission", J. Lightw. Technol., vol. 20, pp. 213-213, 2002.
  22. E. L. Goldstein, et al. "Performance implications of component crosstalk in transparent lightwave networks", Photon. Technol. Lett., vol. 6, pp. 657-660, 1994.
  23. C. J. Rasmussen, et al. "Theoretical and experimental studies of the influence of the number of crosstalk signals on the penalty cuased by incoherent optical crosstalk", in Proc. OFC'99 , 1999, Paper TuR5,. pp. 258-260.
  24. F. Liu, et al. "Experimental verification of a new model describing the influence of incomplete signal extinction ratio on the sensitivity degradation due to multiple interferometric crosstalk", Photon. Technol. Lett. , vol. 11, pp. 137-139, 1999.
  25. C. R. S. Fludger, et al. "Impact of MPI and modulation format on transmission systems employing distributed Raman amplification", Electron. Lett., vol. 37, pp. 970-972, 2001.
  26. S. Chandrasekhar, et al. "Performance of FEC in the presence of in-band crosstalk", in OFC'02, vol. 288, 2002.
  27. S. Radic, et al. "Forward error correction performance in the presence of Rayleigh-dominated transmission noise", Photon. Technol. Lett., vol. 15, pp. 326-328, 2003.
  28. V. Kaman, et al. "Mitigation of optical crosstalk penalty in photonic cross-connects using forward error correction", Electron. Lett., vol. 39, pp. 678-679, 2003.
  29. P. J. Winzer, et al. "Coherent crosstalk in ultra-dense WDM systems", in Proc. ECOC'04, 2004.
  30. P. J. Winzer, et al. "Dispersion-tolerant optical communication systems", in Proc. ECOC'04, 2004.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited