OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 23, Iss. 1 — Jan. 1, 2005
  • pp: 260–

Wavelength-Hopping Time-Spreading Optical CDMA With Bipolar Codes

Wing C. Kwong, Guu-Chang Yang, and Cheng-Yuan Chang

Journal of Lightwave Technology, Vol. 23, Issue 1, pp. 260- (2005)


View Full Text Article

Acrobat PDF (431 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Two-dimensional wavelength-hopping time-spreading coding schemes have been studied recently for supporting greater numbers of subscribers and simultaneous users than conventional one-dimensional approaches in optical code-division multiple-access (OCDMA) systems. To further improve both numbers without sacrificing performance, a new code design utilizing bipolar codes for both wavelength hopping and time spreading is studied and analyzed in this paper. A rapidly programmable, integratable hardware design for this new coding scheme, based on arrayed-waveguide gratings, is also discussed.

© 2005 IEEE

Citation
Wing C. Kwong, Guu-Chang Yang, and Cheng-Yuan Chang, "Wavelength-Hopping Time-Spreading Optical CDMA With Bipolar Codes," J. Lightwave Technol. 23, 260- (2005)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-23-1-260


Sort:  Journal  |  Reset

References

  1. E. Park, A. J. Mendez and E. Garmire, "Temporal/spatial optical COMA networks-Design, demonstration and comparison with temporal networks", IEEE Photon. Technol. Lett., vol. 4, no. 10, pp. 1160-1162, Oct. 1992.
  2. L. Tancevski and I. Andonovic, "Wavelength hopping/time spreading code division multiple access systems", Electron. Lett., vol. 30, no. 17, pp. 1388-1390, Aug. 1994.
  3. A. J. Mendez, J. L. Lambert, J.-M. Morookian and R. M. Gagliardi, "Synthesis and demonstration of high speed, bandwidth efficient optical code division multiple access (COMA) tested at 1 Gb/s throughput", IEEE Photon. Technol. Lett., vol. 6, no. 9, pp. 1146-1148, Sep. 1994.
  4. G.-C. Yang and W. C. Kwong, "Performance comparison of multiwavelength CDMA and WDMA+CDMA for fiber-optic networks", IEEE Trans. Commun., vol. 45, no. 11, pp. 1426-1434, Nov. 1997.
  5. H. Fathallah, L. A. Rusch and S. LaRochelle, "Passive optical fast frequency-hop CDMA communications system", J. Lightw. Technol., vol. 17, no. 3, pp. 397-405, Mar. 1999.
  6. A. J. Mendez, R. M. Gagliardi, H. X. C. Feng, J. P. Heritage and J.-M. Morookian, "Strategies for realizing optical CDMA for dense, high speed, long span, optical network applications", J. Lightw. Technol., vol. 18, no. 12, pp. 1685-1696, Dec. 2000.
  7. G.-C. Yang and W. C. Kwong, Prime Codes With Applications to CDMA Optical and Wireless Networks, Boston, MA: Artech House, 2002.
  8. A. J. Mendez, R. M. Gagliardi, V. J. Hernandez, C. V. Bennett and W. J. Lennon, "Design and performance analysis of Wavelength/Time (W/T) matrix codes for optical COMA", J. Lightw, Technol. , vol. 21, no. 11, pp. 2524-2533, Nov. 2003.
  9. H. Takahashi, K. Oda, H. Toba and Y. Inoue, "Transmission characteristics of arrayed waveguide Nx N wavelength multiplexer", J. Lightw. Technol., vol. 13, no. 3, pp. 447-455, Mar. 1995.
  10. S. Kim, "Cyclic optical encoders/decoders for compact optical CDMA networks", IEEE Photon. Technol. Lett., vol. 12, no. 4, pp. 428 -430, Apr. 2000.
  11. S. Yegnanarayanan, A. S. Bhushan and B. Jalali, "Fast wavelength-hopping time-spreading encoding/decoding for optical CDMA", IEEE Photon. Technol. Lett., vol. 12, no. 5, pp. 573-576, May 2000.
  12. K. Yu, J. Shin and N. Park, "Wavelength-time spreading optical CDMA system using wavelength multiplexers and mirrored fiber delay lines", IEEE Photon. Technol. Lett., vol. 12, no. 9, pp. 1278-1280, Sep. 2000.
  13. L. R. Chen, "Flexible fiber Bragg grating encoder/decoder for hybrid wavelength-time optical CDMA", IEEE Photon. Technol. Lett., vol. 13, no. 11, pp. 1233 -1235, Nov. 2001.
  14. P. C. Teh, P. Petropoulos, M. Ibsen and D. Richardson, "A comparative study of the performance of seven-and 63-chip optical code-division multiple-access encoders and decoders based on superstructured fiber Bragg gratings", J. Lightw. Technol., vol. 19, no. 9, pp. 1352-1365, Sep. 2001.
  15. C.-C. Yang, J.-F. Huang and S.-P. Tseng, "Optical CDMA network codecs structured with M-sequence codes over waveguide-grating routers", IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 641-643, Feb. 2004.
  16. S. W. Golomb and H. Taylor, "Two-dimensional synchronization patterns for minimum ambiguity", IEEE Trans. Inf. Theory , vol. IT-28, no. 4, pp. 600-604, Jul. 1982.
  17. S. W. Golomb, T. Etzion and H. Taylor, "Sets of sonar sequences", in Proc. 1991 IEEE Int. Symp. Information Theory (Cat. No. 91 CH3003-1) , June <day>24-28</day> 1991, p. 383.
  18. O. Moreno, R. Games and H. Taylor, "New constructions and bounds on sonar sequences", in Proc. 1991 IEEE Int. Symp. Information Theory (Cat. No. 91 CH3003-1), Jun. <day>24-28</day> 1991, p. 283.
  19. O. Moreno, R. A. Games and H. Taylor, "Sonar sequences from Costas arrays and the best known sonar sequences with up to 100 symbols", IEEE Trans. Inf. Theory, vol. 39, no. 6, pp. 1985-1987, Nov. 1993.
  20. L. Bin, "One-coincidence sequences with specified distance between adjacent symbols of frequency-hopping multiple access", IEEE Trans. Commun., vol. 45, no. 4, pp. 408-410, Apr. 1997.
  21. Z. Wei, H. M. H. Shalaby and H. Ghafouri-Shiraz, "Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems", J. Lightw. Technol., vol. 19, no. 9, pp. 1274-1281, Sep. 2001.
  22. R. M. H. Yim, L. R. Chen and J. Bajcsy, "Design and performance of 2-D codes for wavelength-time optical CDMA", IEEE Photon. Technol. Lett., vol. 14, no. 5, pp. 714 -716, May 2002.
  23. F. R. K. Chung, J. A. Salehi and V. K. Wei, "Optical orthogonal codes: design, analysis and applications", IEEE Trans. Inf. Theory, vol. 35, no. 3, pp. 595-604, May 1989.
  24. G.-C. Yang and T. Fuja, "Optical orthogonal codes with unequal auto-and cross-correlation constraints", IEEE Trans. Inf. Theory, vol. 41, no. 1, pp. 96-106, Jan. 1995.
  25. L. Nguyen, T. Dennis, B. Aazhang and J. F. Young, "Experimental demonstration of bipolar codes for optical spectral amplitude CDMA communication", J. Lightw. Technol., vol. 15, no. 9, pp. 1647-1653, Sep. 1997.
  26. C. F. Lam, D. T. K. Tong, M. C. Wu and E. Yablonovitch, "Experimental demonstration of bipolar optical CDMA system using a balanced transmitter and complementary spectral encoding", IEEE Photon. Technol. Lett., vol. 10, no. 10, pp. 1504-1506, Oct. 1998.
  27. J.-F. Huang and D.-Z. Hsu, "Fiber-grating-based optical CDMA spectral coding with nearly orthogonal m-sequence codes", IEEE Photon. Technol. Lett., vol. 12, no. 9, pp. 1252-1254, Sep. 2000.
  28. W. C. Kwong, G.-C. Yang and Y.-C. Liu, "A new family of wavelength-time optical CDMA codes utilizing programmable arrayed waveguide gratings", IEEE J. Sel. Areas Commun.,
  29. J. G. Proakis, Digital Communications , 3rd ed. New York: McGraw-Hill, 1995.
  30. A. W. Lam and S. Tantaratana, Theory and Application of Spread Spectrum Systems, Piscataway, NJ: IEEE, 1994.
  31. T.-W. F. Chang and E. H. Sargent, "Optimizing spectral efficiency in multiwavelength optical CDMA system", IEEE Trans. Commun., vol. 51, no. 9, pp. 1442-1445, Sep. 2003.
  32. J. P. Sokoloff, P. R. Prucnal, I. Glesk and M. Kane, "A terahertz optical asymmetric demultiplexer (TOAD)", IEEE Photon. Technol. Lett., vol. 5, no. 7, pp. 787 -790, Jul. 1993.
  33. I. Glesk, J. P. Sokoloff and P. R. Prucnal, "Demonstration of all-optical demultiplexing of TDM data at 250 Gb/s", Electron. Lett., vol. 30, no. 4, pp. 339-341, Feb. 1994.
  34. J. H. Lee, P. C. Teh, P. Petropoulos, M. Ibsen and D. Richardson, "A grating-based OCDMA coding-decoding system incorporating a nonlinear optical loop mirror for improved code recognition and noise reduction", J. Lightw. Technol., vol. 20, no. 1, pp. 36-46, Jan. 2002.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited