OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 23, Iss. 1 — Jan. 1, 2005
  • pp: 268–

Comparison of Four Multi-User Quantum Key Distribution Schemes Over Passive Optical Networks

Patrick D. Kumavor, Alan C. Beal, Susanne Yelin, Eric Donkor, and Bing C. Wang

Journal of Lightwave Technology, Vol. 23, Issue 1, pp. 268- (2005)

View Full Text Article

Acrobat PDF (1305 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The performance of four passive optical network topologies in implementing multi-user quantum key distribution is compared. The networks considered are the passive-star network, the optical-ring network based on the Sagnac interferometer, the wavelength-routed network,and the wavelength-addressed bus network. An analysis of the quantum bit-error rate and sifted key rate for each of these topologies is used to determine their suitability for providing service to networks of various sizes.

© 2005 IEEE

Patrick D. Kumavor, Alan C. Beal, Susanne Yelin, Eric Donkor, and Bing C. Wang, "Comparison of Four Multi-User Quantum Key Distribution Schemes Over Passive Optical Networks," J. Lightwave Technol. 23, 268- (2005)

Sort:  Journal  |  Reset


  1. C. H. Bennett and G. Brassard, "Quantum cryptography: 'Public key distribution and coin tossing'", presented at the IEEE Conf. Computers, Systems Signal Processing, Bangalore, India,1984.
  2. W. K. Wootters and W. Zurek, "A single quantum cannot be cloned", Nature (London) , vol. 299, pp. 802-803, 1982.
  3. N. Gisin, et al. "Quantum cryptography", Rev. Mod. Phys., vol. 74, pp. 145-190, Jan. 2002.
  4. P. D. Townsend, J. G. Rarity and P. R. Tapster, "Enhanced single photon fringe visibility in a 10 km-long prototype quantum cryptography channel", Electron. Lett., vol. 29, pp. 1291-1293, Jul. 1993.
  5. C. Marand and P. D. Townsend, "Quantum key distribution over distances as long as 30 km", Opt. Lett., vol. 20, no. 16, pp. 1695 -1697, Aug. 1995.
  6. H. Zbinden, et al. "Interferometry with Faraday mirrors for quantum cryptography", Electron. Lett., vol. 33, pp. 586-588, 1997.
  7. H. Kosaka, A. Tomita, Y. Nambu, N. Kimura and K. Nakamura, "Single photon interference experiment over 100 km for quantum cryptography system using a balanced gated-mode photon detector", arXiv:quant-ph/0 306 066,
  8. C. H. Bennett, "Quantum cryptography using any two nonorthogonal states", Phys. Rev. Lett., vol. 68, no. 21, pp. 3121-3124, May 1992.
  9. P. Xue, C.-F. Li and G.-C. Guo, "Conditional efficient multi-user quantum cryptography network", Phys. Rev. A, Gen. Phys., vol. 65, pp. 022 317-1 -022 317-7, Jan. 2002.
  10. P. D. Townsend, "Quantum cryptography on multi-user optical fiber networks", Nature (London), vol. 385, pp. 47-49, Jan. 1997.
  11. S. J. D. Phoenix, et al. "Multi-user quantum cryptography on optical networks", J. Mod. Opt., vol. 42, no. 6, pp. 1155 -1163, Jan. 1995.
  12. D. Stucki, N. Gisin, O. Guinnard, G. Ribordi and H. Zbinden, "Quantum key distribution over 67 km with a plug&play system", New J. Phys., vol. 4, pp. 41.1 -41.8, Jul. 2002.
  13. A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden and N. Gisin, "`Plug and play' systems for quantum cryptography", Appl. Phys. Lett., vol. 70, pp. 793-795, Feb. 1997.
  14. T. Nishioka, H. Ishizuka, T. Hasegawa and J. Abe, "`Circular type' quantum key distribution", IEEE Photon. Technol. Lett., vol. 14, no. 4, pp. 576-578, Apr. 2002.
  15. D. Stucki, et al. "Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APD's", arXiv:quant-ph/0 106 007,
  16. E. Waks, et al. "Secure communication: Quantum cryptography with a photon turnstile", Nature (London), vol. 420, p. 762, Dec. 2002.
  17. E. Moreau, et al. "Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities", Appl. Phys. Lett., vol. 79, no. 18, pp. 2865-2867, Oct. 2001.
  18. P. A. Hiskett, et al. "Eighty kilometer transmission experiment using an InGaAs/InP SPAD-based quantum cryptography receiver operating at 1.55 � m", J. Mod. Opt., vol. 48, no. 13, pp. 1957-1966, Jul. 2001.
  19. D. S. Bethune and W. P. Risk, "Autocompensating quantum cryptography", New J. Phys., vol. 4, pp. 42.1-42.15, Jul. 2002.
  20. X. Fang and R. O. Claus, "Polarization-dependent all-fiber wavelength-division multiplexer based on a Sagnac interferometer", Opt. Lett., vol. 20, no. 20, pp. 2146-2148, Oct. 1995.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited