OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 23, Iss. 1 — Jan. 1, 2005
  • pp: 295–

Dispersion-Tolerant Multiple WDM Channel Millimeter-Wave Signal Generation Using a Single Monolithic Mode-Locked Semiconductor Laser

M. Attygalle, C. Lim, and A. Nirmalathas

Journal of Lightwave Technology, Vol. 23, Issue 1, pp. 295- (2005)


View Full Text Article

Acrobat PDF (555 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

This paper presents a scheme by which multiple wavelength-division-multiplexed millimeter-wave (mm-wave) signals in the range of 30 GHz can be generated from a single monolithic semiconductor laser for applications in optically fed mm-wave networks or fiber radio networks. The mm-wave signals are generated using dual optical modes separated by a mm-wave frequency, obtained from spectrum slicing the output from a stable multimode hybrid mode-locked semiconductor laser. In this scheme, self-heterodyne detection at a high-speed photodetector achieves the photonic upconversion of low-data-rate signals to mm-wave frequencies without the need for electronic mixing. Experimental results show the generation of up to 14 WDM channels using a single laser. The phase noise of electrical signals generated by photonic upconversion of these signals is less than -94 dBc/Hz at 100-kHz offset frequency across the wavelengths. Also presented is the transmission of 155-Mb/s binary-phase-shift-keyed data signals at 30-GHz frequency over 10 km of single-mode fiber at different wavelengths using dual-mode signals. The results confirm that a bit-error rate of 10-^9 can be easily achieved. The dispersion tolerance of the dual-mode signals is evaluated using simulation and an analytical model and compared with other mm-wave signal generation techniques.

© 2005 IEEE

Citation
M. Attygalle, C. Lim, and A. Nirmalathas, "Dispersion-Tolerant Multiple WDM Channel Millimeter-Wave Signal Generation Using a Single Monolithic Mode-Locked Semiconductor Laser," J. Lightwave Technol. 23, 295- (2005)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-23-1-295


Sort:  Journal  |  Reset

References

  1. H. Al-Raweshidy and S. Komaki, Radio Over Fiber Technologies for Mobile Communications Networks, Norwood, MA: Artech House, 2002.
  2. H. Kawamura, N. Imai, E. Ogawa and H. Inomata, "High-speed data transmission using millimeter-wave fiber-optic links", IEICE Trans. Communications, pp. 1784-1791, 1996.
  3. C. Lim, A. Nirmalathas, M. Attygalle, D. Novak and R. Waterhouse, "On the merging of millimeter-wave fiber radio backbone with 25 GHz WDM ring network", J. Lightw. Technol. , vol. 21, no. 10, pp. 2203-2210, Oct. 2003.
  4. J. Park and K. Y. Lau, "Millimeter-wave (39 GHz) fiber-wireless transmission of broadband multichannel compressed digital video", Electron. Lett., vol. 32, pp. 474-475, 1996.
  5. C. Lim, A. Nirmalathas, D. Novak, R. Waterhouse and G. Yoffe, "Millimeter-wave broad-band fiber-wireless system incorporating baseband data transmission over fiber and remote LO delivery", J. Lightw. Technol., vol. 18, no. 10, pp. 1355-1363, Oct. 2000.
  6. D. Novak, Z. Ahmed, R. B. Waterhouse and R. S. Tucker, "Signal generation using pulsed semiconductor lasers for application in millimeter-wave wireless links", IEEE Trans. Microwave Theory Tech., vol. 43, no. 9, pp. 2257-2262, Sep. 1995.
  7. A. J. C. Vieira, P. R. Herczfeld, A. Rosen, M. Ermold, E. E. Funk, W. D. Jemison and K. J. Williams, "A mode-locked microchip laser optical transmitter for fiber radio", IEEE Trans. Microwave Theory Tech., vol. 49, no. 10, pp. 1882-1887, Oct. 2001.
  8. C. H. von Helmolt, U. Kruger, K. Kruger and G. Grosskopf, "A mobile broad-band communication system based on mode-locked lasers", IEEE Trans. Microwave Theory Tech., vol. 45, no. 8, pp. 1424-1430, Aug. 1997.
  9. G. J. Simonis and K. G. Purchase, "Optical generation, distribution and control of microwaves using laser heterodyne", IEEE Trans. Microwave Theory Tech., vol. 38, no. 5, pp. 667-669, May 1990.
  10. D. Wake, C. R. Lima and P. A. Davies, "Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser", IEEE Trans. Microwave Theory Tech., vol. 43, no. 9, pp. 2270 -2276, Sep. 1995.
  11. M. Ogusu, K. Inagaki, Y. Mizuguchi and T. Ohira, "Carrier generation and data transmission on millimeter-wave bands using two-mode locked Fabry-P�rot lasers", IEEE Trans. Microwave Theory Tech., vol. 51, no. 2, pp. 382-391, Feb. 2003.
  12. J. J. O'Reilly, P. M. Lane, R. Heidemann and R. Hofstetter, "Optical generation of very narrow linewidth millimeter wave signals", Electron. Lett., vol. 28, pp. 2309-2311, 1992.
  13. M. Mielke, G. A. Alphonse and P. J. Delfyett, "168 channels x 6 GHz from a multiwavelength mode-locked semiconductor laser", IEEE Photon. Technol. Lett., vol. 15, no. 4, pp. 501-503, Apr. 2003.
  14. W. Hu, T. Tanaka, K. Inagaki and A. Xu, "50 GHz WDM sources and its uplink system using two-mode injection-locked Fabry-Perot lasers and electro-absorption modulator for millimeter-wave radio-on-fiber communications", in Proc. Optical Fiber Communication (OFC 2003), Atlanta, GA, 2003, pp. 145-146.
  15. U. Gliese, S. Norskov and T. N. Nielsen, "Chromatic dispersion in fiber-optic microwave and millimeter-wave links", IEEE Trans. Microwave Theory Tech., vol. 44, no. 10, pp. 1716-1724, Oct. 1996.
  16. R. A. Griffin, P. M. Lane and J. J. O'Reilly, "Dispersion-tolerant subcarrier data modulation of optical millimeter-wave signals", Electron. Lett., vol. 32, pp. 2258-2260, 1996.
  17. G. H. Smith, D. Novak and Z. Ahmed, "Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators", IEEE Trans. Microwave Theory Tech., vol. 45, no. 8, pp. 1410-1415, Aug. 1997.
  18. S. Arahira and Y. Ogawa, "Passive and hybrid modelockings in a multi-electrode DBR laser with two gain sections", Electron. Lett., vol. 31, pp. 808-809, 1995.
  19. D. von der Linde, "Characterization of the noise in continuously operating mode-locking lasers", Appl. Phys. B, Photophys. Laser Chem., vol. 39, pp. 201-217, 1986.
  20. B. R. Clarke, "Mode partition noise introduced by optical filtering", Electron. Lett, vol. 25, pp. 211-212, 1989.
  21. C. Lim, A. Nirmalathas, D. Novak and R. Waterhouse, "Impact of ASE on phase noise in LMDS incorporating optical fiber backbones", in Proc. Microwave Photonics (MWP 2000), vol. 1, 2000, pp. 148-151.
  22. M. Mielke, G. A. Alphonse and P. J. Delfyett, Jr., "Reduction of mode partition noise in a multiwavelength semiconductor laser through hybrid modelocking", in Proc. Conf. Lasers Electro-Optics (CLEO 2002), vol. 1, 2002, pp. 348-349.
  23. H. Schmuck, "Comparison of optical millimeter-wave system concepts with regard to chromatic dispersion", Electron. Lett., vol. 31, pp. 1848-1849, 1995.
  24. C. Lim, D. Novak, A. Nirmalathas and G. H. Smith, "Dispersion-induced power penalties in millimeter-wave signal transmission using multisection DBR semiconductor laser", IEEE Trans. Microwave Theory Tech., vol. 49, no. 2, pp. 288-296, Feb. 2001.
  25. A. V. Tran, W. D. Zhong, R. S. Tucker and R. Lauder, "Optical add-drop multiplexers with low crosstalk", IEEE Photon. Technol. Lett., vol. 13, no. 6, pp. 582-584, Jun. 2001.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited