OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 23, Iss. 1 — Jan. 1, 2005
  • pp: 388–

An Electrically Pre-Equalized 10-Gb/s Duobinary Transmission System

Mohamed M. El Said, John Sitch, and Mohamed I. Elmasry

Journal of Lightwave Technology, Vol. 23, Issue 1, pp. 388- (2005)

View Full Text Article

Acrobat PDF (865 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Duobinary signaling is combined with a proposed electrical pre-equalization scheme to extend the reach of 10-Gb/s signals that are transmitted over standard single-mode fiber. The proposed scheme is based on predistorting the duobinary signal using two T/2-spaced finite-impulese response (FIR) filters. The outputs of the FIR filters then modulate two optical carriers that are in phase quadrature. Simulation results show that distances in excess of 400 km at bit-error rates less than 10^-15 are possible. Incorporating a forward-error correction scheme can extend the reach to distances in excess of 800 km. The reach limitation arises not from chromatic dispersion but from fiber nonlinearity, relative intensity noise due to phase-modulation-to-amplitude-modulation noise conversion, and optical amplifier noise accumulation. To demonstrate the feasibility of implementing the proposed scheme, a test chip is implemented in a 0.5-µm SiGe BiCMOS technology. The chip incorporates two 10-tap T/2-spaced FIR filters, which are sufficient to equalize a 10-Gb/s duobinary signal that is transmitted over distances in excess of 400 km. The pre-equalization capabilities of the chip are tested by postprocessing the measured chip output to mimic the effects of the optical channel.

© 2005 IEEE

Mohamed M. El Said, John Sitch, and Mohamed I. Elmasry, "An Electrically Pre-Equalized 10-Gb/s Duobinary Transmission System," J. Lightwave Technol. 23, 388- (2005)

Sort:  Journal  |  Reset


  1. "From Loss Test to Fiber Certification Fiber Characterization Today Part I: Chromatic Dispersion", Agilent Technologies, White Paper, Apr. 2003.
  2. J. Ryan, "Fiber considerations for metropolitan networks", Alcatel Telecommunication Rev., pp. 52-55, 1st quarter, 2002.
  3. J. Winters and R. Gitlin, "Electrical signal processing techniques in long-haul fiber-optic systems", IEEE Trans. Commun., vol. 38, no. 9, pp. 1439-1453, Sept. 1990.
  4. F. Buchali, H. Bul�w, W. Baumert, R. Ballentin and T. Wehreu, "Reduction of the chromatic dispersion penalty at 10 Gbit/s by integrated electronic equalisers", in Proc. IEEE Optical Fiber Communication Conf. (OFC'00) , vol. 3, 2000, pp. 268-270.
  5. S. Otte and W. Rosenkranz, "A decision feedback equalizer for dispersion compensation in high speed optical transmission systems", in Proc. Int. Conf. Transparent Optical Networks, 1999, pp. 19-22.
  6. C. Fludger, J. Whiteaway and P. Anslow, "Electronic equalization for low cost 10 Gbit/s directly modulated systems", presented at the Optical Fiber Communication Conf. Exhibit (OFC'04), 2004.
  7. J. Winters, "Equalization in coherent lightwave systems using a fractionally spaced equalizer", J. Lightw. Technol., vol. 8, no. 10, pp. 1487-1491, Oct. 1990.
  8. G. P. Agrawal, Fiber-Optic Communication Systems, New York: Wiley, 2002.
  9. W. Kaiser, G. Mohs, T. Wuth, R. Neuhauser, W. Rosenkranz and C. Glingener, "225 km repeaterless 10 Gb/s transmission over uncompensated SSMF using duobinary modulation and Raman amplification", in Proc. 14th Annu. Meeting IEEE Lasers Electro-Optics Society (LEOS'01), vol. 1, Nov. 2001, pp. 155-156.
  10. M. Wichers, W. Kaiser, T. Wuth and W. Rosenkranz, "10 Gb/s chirped duobinary transmission (CDBT) over 277 km of uncompensated standard single mode fiber", in Proc. 4th Int. Conf. Transparent Optical Networks (ICTON'02), vol. 1, 2002, pp. 34-37.
  11. E. Forestieri, "Evaluating the error probability in lightwave systems with chromatic dispersion, arbitrary pulse shape and pre-and postdetection filtering", J. Lightw. Technol., vol. 18, no. 11, pp. 1493-1503, Nov. 2000.
  12. G. Keiser, Optical Fiber Communications, New York: McGraw-Hill, 2000.
  13. G. P. Agrawal, Nonlinear Fiber Optics, San Diego, CA: Academic, 1989.
  14. O. Sinkin, R. Holzlohner, J. Zweck and C. Menyuk, "Optimization of the split-step Fourier method in modeling optical-fiber communications systems", J. Lightw. Technol., vol. 21, no. 1, pp. 61-68, Jan. 2003.
  15. J. L. Zyskind, J. A. Nagel and H. D. Kidrof, "Erbium-doped fiber amplifiers for optical communications," in Optical Fiber Telecommunications IIIB, I. P. Kaminov, and T. L. Koch, Eds. San Diego, CA: Academic, 1997, ch. 9.
  16. D. Marcuse, "Single-channel operation in very long nonlinear fibers with optical amplifiers at zero dispersion", J. Lightw. Technol. , vol. 9, no. 3, pp. 356-361, Mar. 1991.
  17. F. Matera and M. Settembre, "Comparison of the performance of optically amplified transmission systems", J. Lightw. Technol., vol. 14, no. 1, pp. 1-12, Jan. 1996.
  18. K. Petermann, "FM-AM noise conversion in dispersive single-mode fiber transmission lines", Electron. Lett., vol. 26, no. 25, pp. 2097-2098, Dec. 1990.
  19. S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida and H. Wakabayashi, "Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission", J. Lightw. Technol., vol. 8, no. 11, pp. 1716-1722, Nov. 1990.
  20. S. Walklin and J. Conradi, "Multilevel signaling for increasing the reach of 10 Gb/s lightwave systems", J. Lightw. Technol., vol. 17, no. 11, pp. 2235-2248, Nov. 1999.
  21. F. Heismann, S. K. Korotky and J. J. Veselka, "Lithium niobate integrated optics: selected contemporary devices and system applications," in Optical Fiber Telecommunications IIIB, I. P. Kaminov, and T. L. Koch, Eds. San Diego, CA: Academic, 1997, ch. 9.
  22. P. A. Humblet and M. Azizoglu, "On the bit error rate of lightwave systems with optical amplifiers", J. Lightw. Technol., vol. 9, no. 11, pp. 1576-1582, Nov. 1991.
  23. Y. Cai, J. M. Morris, T. Adali and C. R. Menyuk, "On turbo code decoder performance in optical-fiber communication systems with dominating ASE noise", J. Lightw. Technol., vol. 21, no. 3, pp. 727-734, Mar. 2003.
  24. S. L. Danielsen, B. Mikkelsen, T. Durhuus, C. Joergensen and K. E. Stubkjaer, "Detailed noise statistics for an optically preamplified direct detection receiver", J. Lightw. Technol., vol. 13, no. 5, pp. 977-981, May 1995.
  25. J.-S. Lee and C.-S. Shim, "Bit-error-rate analysis of optically preamplified receivers using an eigenfunction expansion method in optical frequency domain", J. Lightw. Technol., vol. 12, no. 7, pp. 1224-1229, Jul. 1994.
  26. B. K. Whitlock, P. K. Pepeljugoski, D. M. Kuchta, J. D. Crow and S.-M. Kang, "Computer modeling and simulation of the optoelectronic technology consortium (OETC) optical bus", IEEE J. Sel. Areas Commun., vol. 15, no. 4, pp. 717-730, May 1997.
  27. J. C. Cartledge and A. F. Elrefaie, "Effect of chirping-induced waveform distortion on the performance of direct detection receivers using traveling-wave semiconductor optical preamplifiers", J. Lightw. Technol., vol. 9, no. 2, pp. 209-219, Feb. 1991.
  28. J. P. Gordon and L. F. Mollenauer, "Phase noise in photonic communication systems using linear amplifiers", Opt. Lett. , vol. 15, no. 23, pp. 1351-1353, Dec. 1990.
  29. A. V. T. Cartaxo, B. Wedding and W. Idler, "Influence of fiber nonlinearity on the phase noise to intensity noise conversion in fiber transmission: theoretical and experimental analysis", J. Lightw. Technol., vol. 16, no. 7, pp. 1187-1194, Jul. 1998.
  30. A. Lender, "Correlative digital communication techniques", IEEE Trans. Commun. Technol., vol. COM-12, no. 4, pp. 128 -135, Dec. 1964.
  31. S. Walklin and J. Conradi, "On the relationship between chromatic dispersion and transmitter filter response in duobinary optical communication systems", IEEE Photon. Technol. Lett., vol. 9, no. 7, pp. 1005-1007, Jul. 1997.
  32. K. Yonenaga, S. Kuwano, S. Norimatsu and N. Shibata, "Optical duobinary transmission system with no receiver sensitivity degradation", Electron. Lett., vol. 31, no. 4, pp. 302-304, Feb. 1995.
  33. E. A. Lee and D. G. Messerschmitt, Digital Communication, 2nd ed. Norwell, MA: Kluwer Academic, 1994.
  34. W. Hatton and M. Nishimura, "Temperature dependence of chromatic dispersion in single mode fibers", J. Lightw. Technol., vol. 4, no. 10, pp. 1552-1555, Oct. 1986.
  35. M. Yoneyama, Y. Miyamoto, T. Otsuji, A. Hirano, H. Kikuchi, T. Ishibashi and H. Miyazawa, "Fully electrical 40-Gbit/s TDM system prototype and its application to 160-Gbit/s WDM transmission", in Proc. Optical Fiber Communication Conf./Int. Conf. Integrated Optics Optical Fiber Communication (OFC/IOOC'99), vol. 3, 1999, pp. 128-130.
  36. T. Kato, Y. Koyano and M. Nishimura, "Temperature dependence of chromatic dispersion in various types of optical fiber", Opt. Lett., vol. 25, no. 16, pp. 1156-1158, Aug. 2000.
  37. M. J. Hamp, J. Wright, M. Hubbard and B. Brimacombe, "Investigation into the temperature dependence of chromatic dispersion in optical fiber", IEEE Photon. Technol. Lett., vol. 14, no. 11, pp. 1524-1526, Nov. 2002.
  38. P. S. Andr�, A. N. Pinto and J. L. Pinto, "Effect of temperature on the single mode fibers chromatic dispersion", in Proc. SBMO/IEEE MTT-S International Microwave Optoelectronics Conf. (IMOC'03) , vol. 1, 2003, pp. 231-234.
  39. R. A. Griffin and A. C. Carter, "Optical differential quadrature phase-shift key (oDQPSK) for high capacity optical transmission", in Proc. Optical Fiber Communication Conf. Exhibit (OFC'02), 2002, pp. 367-368.
  40. B. Farhang-Boroujeny, Adaptive Filters Theory and Applications, New York: Wiley, 1998, ch. 10.
  41. N. S. Bergano, "Undersea amplified lightwave systems design," in Optical Fiber Telecommunications IIIA, I. P. Kaminov, and T. L. Koch, Eds. San Diego, CA: Academic, 1997, ch. 10.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited